首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myogenesis is accompanied by the withdrawal of proliferating myoblasts from the cell cycle, their fusion to form myotubes, and the coordinate expression of a variety of muscle-specific gene products, such as the muscle isoenzyme of creatine kinase (MCK). In the present study we used the nonfusing muscle cell line, BC3H1, to examine the mechanisms involved in regulation of MCK mRNA expression. Proliferating BC3H1 cells, in media with 20% fetal calf serum, had undetectable levels of MCK mRNA. Exposure of undifferentiated cells to media containing 0.5% serum resulted in withdrawal of cells from the cell cycle and in a several hundred-fold increase in the steady state level of MCK mRNA. Induction of this muscle-specific mRNA could be rapidly reversed by exposure of quiescent differentiated cells to media containing either 20% serum or pituitary fibroblast growth factor. The decline in the steady state level of MCK mRNA following mitogenic stimulation was not dependent upon reentry of cells into the cell cycle, but it did require protein synthesis. Together, these data indicate that fibroblast growth factor can specifically inhibit muscle-specific gene expression through a mechanism independent of cell proliferation. The finding that MCK mRNA was down-regulated by a mechanism that required protein synthesis suggests that mitogen-inducible early gene products may be involved in regulation of muscle gene expression.  相似文献   

2.
We have examined the pattern of dihydrofolate reductase (DHFR) enzyme and mRNA levels in cell cycle stage-specific populations obtained by centrifugal elutriation in Chinese hamster ovary cells and in a derivative line in which the dihydrofolate reductase gene is amplified approximately 50-fold. On a per cell basis, we observed a 2-fold increase in DHFR activity as cells progressed from G1 to G2/M with a concomitant 2-fold increase in the rate of protein synthesis and steady state level of mRNA. Analysis of DHFR mRNA levels in cell cycle stage-specific mouse 3T6 and human 143 tk- cells gave a similar pattern. We also demonstrate that simple alterations in growth conditions prior to elutriations can dramatically increase the levels of DHFR mRNA in all cell cycle states, thereby indicating that growth response associated with the DHFR gene functions independent of the cell cycle. We conclude that during periods of exponential growth the increases in dihydrofolate reductase activity, rate of protein synthesis, and steady state levels of mRNA parallel the general increases in cell volume and protein content associated with normal progression through the cell cycle, and therefore DHFR cannot be considered a cell cycle-regulated enzyme.  相似文献   

3.
Previous studies have demonstrated that rat aortic smooth muscle cells (SMC) show marked changes in smooth muscle (SM) alpha-actin content and fractional synthesis as a function of cell density and growth (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352; Blank, R., Thompson, M. M., and Owens, G. K. (1988) J. Cell Biol. 107, 299-306). Results of this study show that, although there is a 6-fold increase in SM alpha-actin content in postconfluent density arrested cultures as compared to proliferating subconfluent cultures, SM alpha-actin mRNA levels are not different between these cells. This suggests that the SM alpha-actin gene is constitutively active under both of these conditions and that accumulation of SM alpha-actin in postconfluent cells is due to translational and/or post-translational controls. The relationship between growth and cytodifferentiation was further explored by examining the effects of platelet-derived growth factor (PDGF)- or serum-induced growth on actin expression in postconfluent, quiescent cultures maintained in a defined serum-free media. Although both factors have been shown to stimulate proliferation and decrease fractional SM alpha-actin synthesis (Blank et al., 1988), their effects on actin mRNA levels were quite different. PDGF was found to induce a dramatic drop in SM alpha-actin steady state mRNA level but had no effect on nonmuscle beta-actin mRNA level. In contrast, serum stimulation was shown to increase nonmuscle beta-actin mRNA level, whereas SM alpha-actin mRNA level remained constant. Taken together these results indicate that PDGF is a specific and potent repressor of SM alpha-actin expression in vascular SMC and implicate a possible developmental role for PDGF in control of SMC differentiation. In addition, the observation that the level of SM alpha-actin mRNA is unaltered in serum-stimulated cells indicates that an absolute decrease in SM alpha-actin mRNA is not obligatory for cell cycle entrance.  相似文献   

4.
5.
The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89 alpha, and hsp89 beta may be associated with the modifications in gene expression and cellular architecture that occur during differentiation. In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89 alpha mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89 alpha mRNA levels in HL-60 cells and of hsp89 beta mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.  相似文献   

6.
A 72,000 mol wt protein designated PABP binds to the poly(A)+ track of messenger RNAs with high affinity and has been suggested to play an important role in mRNA metabolism in eucaryotic cells. We have employed a human PABP cDNA probe to study the expression of this gene at the mRNA level in BALB/c3T3 mouse cells under different growth conditions and in exponentially growing HeLa cells throughout the cell division cycle. We describe experiments which establish that in BALB/c3T3 cells the expression of this gene is growth factor regulated. Moreover, the gene behaves like a primary response gene in that its induction in quiescent cells does not require the prior synthesis of other growth factor-regulated proteins. In exponentially growing HeLa cells PABP mRNA is expressed throughout the cell division cycle indicating that the expression of this gene is not limited to a specific phase of the cell cycle.  相似文献   

7.
8.
9.
10.
Phosphoenolpyruvate carboxykinase (PEPCK) mRNA is elevated in H4IIEC3 rat hepatoma cells cultured at high density, suggesting that PEPCK expression and growth arrest may be coordinately regulated. Induction of growth arrest either by contact inhibition (high culture density) or by serum deprivation correlated with significant increases in PEPCK protein and its mRNA. The observation that PEPCK mRNA was induced by contact inhibition in the presence of serum indicates that the effect of high density is independent of insulin or any other serum component. The magnitudes of the changes in PEPCK expression during growth arrest were greatly enhanced in KRC-7 cells, an H4IIEC3 subclone that is much more sensitive to growth arrest than its parental cell line. Restimulation of proliferation in growth-arrested KRC-7 cells, either by addition of serum or insulin to serum-deprived cells or by replating contact-inhibited cells at low density, caused a rapid decrease in PEPCK expression. However, PEPCK mRNA is not always reduced in proliferating cells since treatment of serum-starved cells with epidermal growth factor stimulated entry into the cell cycle but did not affect PEPCK mRNA levels. Finally, dexamethasone induction of PEPCK mRNA was blunted in cells cultured at high density but was unaffected by the presence or absence of serum. Collectively, these data suggest the possibility of cross-talk between the control of PEPCK expression and growth arrest in KRC-7 cells.  相似文献   

11.
12.
13.
Induction of c-fos mRNA levels associated with the stimulation of growth by fetal bovine serum following quiescence was examined in three cell types following brief (24 h) serum starvation. Starved NIH-3T3 and HeLa S3 cells experienced c-fos mRNA induction 20-30 min after addition of serum. In contrast, Swiss-3T3 cells expressed c-fos constitutively following serum starvation. The pattern of oncogene expression coincided with the level of quiescence of each cell line prior to induction. Serum inductions of c-fos expression was dependent upon the response of each cell line to serum starvation, c-fos expression was also examined in HeLa S3 cells that had been separated into sequential cell cycle phases by centrifugal elutriation, c-fos expression peaked during the earliest part of the synchronous G1 phase. The amount of c-fos mRNA measured was approximately twice that found during other cell cycle phases. This suggests that, in addition to its role during the transition from quiescence, the c-fos gene product may play a regulatory role during the earliest part of G1 phase of the continuous cell cycle.  相似文献   

14.
Having previously demonstrated that the insulin-like growth factors (IGFs) induce expression of the myogenin gene, we have now extended our investigation of the induction of myogenesis by the IGFs to a second member of the MyoD family, myf-5. This is the only myogenesis gene other than myogenin expressed early in the differentiation of L6 myoblasts, so its regulation was of particular interest because of our observations on myogenin. In contrast to myogenin, myf-5 mRNA was detectable in proliferating myoblasts, but the steady state levels of myf-5 mRNA fell strikingly for 48 h after the cells were switched to low serum medium containing IGF-II in both murine cell lines and myoblasts cultured from human muscle. In spite of this decrease, translation of myf-5 mRNA appeared essential during the early stages of stimulation of myogenesis by the IGFs; an antisense oligodeoxynucleotide complementary to the first five codons of myf-5 blocked the increase in myogenin mRNA and inhibited morphological (cell fusion) and biochemical (creatine kinase elevation) aspects of myogenesis. We conclude that expression of myf-5 is essential for the initial induction of myogenin by the IGFs, but that subsequent elevation of myogenin expression is independent of myf-5, possibly resulting from autoinduction of the myogenin gene. The functional significance of the dramatic decrease in myf-5 mRNA levels during differentiation is not obvious.  相似文献   

15.
The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner.  相似文献   

16.
The pattern of transglutaminase gene expression through the cell cycle was examined by Northern blot analysis using cultured bovine endothelial cells and a cDNA probe. When the cells reached confluency or were arrested in G0/G1 phase by nutrition deprivation, transglutaminase mRNA rose to a very high level; S- and M-phase extracts showed high and low levels, respectively. Subcellular localization studies by sucrose gradient centrifugation and immunostaining demonstrated that the majority of transglutaminase is present in cytosols throughout the cycle. The cell cycle-dependent changes in the transglutaminase mRNA levels strongly support the implicated involvement of the enzyme in cell growth, differentiation, and senescence.  相似文献   

17.
Summary Three primary isoforms of the dimeric glycolytic enzyme, triosephosphate isomerase (TPI; EC 5.3.1.1), are detected in proliferating human cells. The electrophoretically separable isoforms result from the three possible combinations of constitutive subunits and subunits expressed only in proliferating cells. Only a single primary isoform is observed in quiescent cells. The two subunits, which differ by covalent modification (s), are products of the single structural locus for this enzyme. Expression of the proliferation specific subunit (TPI-2) is detected within 6–10 hr following mitogen stimulation of quiescent human cells, requires RNA synthesis and is inhibited by agents which inhibit interleukin 2 expression or function. Only the constitutive subunit (TPI-1) is detected in proliferating cells from nonhominoid primate species. A single class of TPI mRNA, which is increased > 10 fold following stimulation of quiescent cells, is detected on northern blot analysis and S1 nuclease digestion analysis of RNA from quiescent and proliferating human cells. It is similar in size to the TPI mRNA from proliferating cells of the African green monkey, a primate species not expressing TPI-2. Comparison of the structure of the TPI gene from rhesus monkey (nonexpressing species) to the gene from expressing species does not suggest a mechanism for generating TPI-2. Thus, the regulation of the expression of the hominoid restricted, proliferation specific subunit of TPI has been further defined, although the mechanism for generating TPI-2 remains elusive.  相似文献   

18.
Abstract. Although alterations in the p53 tumour suppressor gene are one of the most frequent genetic lesions occurring in human cancers, the exact function and mechanism of action of normally regulated p53 in the control of cell cycle is unclear. To clanfy further the possible role of this gene in the control of cell proliferation, the cellular level of p53-specific mRNA and its changes during density-dependent growth, and in different proliferation states induced by serum starvation and subsequent serum-stimulation, were followed in WI-38 cells, a normal human diploid fibroblast cell line. Marked differences in the expression of p53 mRNA could be observed in the different proliferation states tested. The pattern of p53 expression proved to be inversely proportional to the growth-rate of the cultures. mRNA was considerably more abundant when cells reached confluency or were arrested by serum deprivation while serum-stimulation caused the opposite effect. These results support the hypothesis that the p53 gene plays a role in G1 control of normal cell proliferation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号