首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal growth cones isolated in bulk from neonatal rat forebrain have uptake and K(+)-stimulated release mechanisms for gamma-aminobutyric acid (GABA). Up to and including postnatal day 5, the K(+)-stimulated release of [3H]GABA and endogenous GABA is Ca2+ independent. At these ages, isolated growth cones neither contain synaptic vesicles nor stain for synaptic vesicle antigens. Here we examined the possibility that the release mechanism underlying Ca2(+)-independent GABA release from isolated growth cones is by reversal of the plasma membrane GABA transporter. The effects of two GABA transporter inhibitors, nipecotic acid and an analogue of nipecotic acid, SKF 89976-A, on K(+)-stimulated release of [3H]GABA from superfused growth cones were examined. Nipecotic acid both stimulated basal [3H]GABA release and enhanced K(+)-stimulated release of [3H]GABA, which indicates that this agent can stimulate GABA release and is, therefore, not a useful inhibitor with which to test the role of the GABA transporter in K(+)-stimulated GABA release from growth cones. In contrast, SKF 89976-A profoundly depressed both basal and K(+)-stimulated [3H]GABA release. This occurred at similar concentrations at which uptake was blocked. These observations provide evidence for a major role of the GABA transporter in GABA release from neuronal growth cones.  相似文献   

2.
Abstract: Kinetic studies of [3H]γ-aminobutyric acid ([3H]GABA) after an intravenous injection were performed in normal rats and in rats with severe degree of hepatic encephalopathy due to fulminant hepatic failure induced by galactosamine. Moreover, plasma and brain GABA levels, and GABA and glutamic acid decarboxylase activity were studied in some brain areas. After intravenous injection, [3H]GABA disappeared very rapidly in the blood of normal rats, with a prompt increase of 3H metabolites. In comatose rats, a delayed disappearance of [3H]GABA.as parallelled by a lower amount of metabolites, indirectly indicating a peripheral decrease of GABA-transaminase activity. The amount of [3H]GABA in brain was lightly but constantly lower in comatose rats than in controls, indicating that the change in permeability of the blood-brain barrier in hepatic encephalopathy does not affect the [3H]GABA uptake of the brain. Furthermore, the assay of endogenous GABA in blood, whole brain, and brain areas did not show any significant difference in any of the two groups. The finding that glutamic acid decarboxylase activity in brain was reduced, together with the indirect evidence of a reduction in GABA-transaminase, may account for the steady state of GABA in hepatic encephalopathy. However, the reduction in glutamic acid decarboxylase activity is in favor of a functional derangement at the GABA-ergic nerve terminals in this pathological condition.  相似文献   

3.
Abstract: To see the effect of a γ-aminobutyric acid GABA uptake inhibitor on the efflux and content of endogenous and labeled GABA, rat cortical slices were first labeled with [3H]GABA and then superfused in the absence or presence of 1 mM nipecotic acid. Endogenous GABA released or remaining in the slices was measured with high performance liquid chromatography, which was also used to separate [3H]GABA from its metabolites. In the presence of 3 mM K+, nipecotic acid released both endogenous and [3H]GABA, with a specific activity four to five times as high as that present in the slices. The release of labeled metabolite(s) of [3H]GABA was also increased by nipecotic acid. The release of endogenous GABA evoked by 50 mM K+ was enhanced fourfold by nipecotic acid but that of [3H]GABA was only doubled when expressed as fractional release. In a medium containing no Ca2+ and 10 mM Mg2+, the release evoked by 50 mMK+ was nearly suppressed in either the absence or the presence of nipecotic acid. In the absence of nipecotic acid electrical stimulation (bursts of 64 Hz) was ineffective in evoking release of either endogenous or [3H]GABA, but in the presence of nipecotic acid it increased the efflux of endogenous GABA threefold, while having much less effect on that of [3H]GABA. Tetrodotoxin (TTX) abolished the effect of electrical stimulation. Both high K+ and electrical stimulation increased the amount of endogenous GABA remaining in the slices, and this increase was reduced by omission of Ca2+ or by TTX. The results suggest that uptake of GABA released through depolarization is of major importance in removing GABA from extracellular spaces, but the enhancement of spontaneous release by nipecotic acid may involve intracellular heteroexchange. Depolarization in the presence of Ca2+ leads to an increased synthesis of GABA, in excess of its release, but the role of this excess GABA remains to be established.  相似文献   

4.
Abstract: The distributions of glycine, γ-aminobutyric acid (GABA), glutamate decarboxylase (EC 4.1.1.15), and GABA transaminase (EC 2.6.1.19) were determined in rabbit and mudpuppy retinas. In both species, peak levels of the amino acids and the enzymes occurred in the inner plexiform layer. Glutamate decarboxylase was almost entirely confined to the inner plexiform layer. Determinations were also made of the GABA content of 107 individual putative amacrine cell somas from mudpuppy retina. About 30% of those somas were found to have high endogenous GABA levels.  相似文献   

5.
Pyrrolines as Prodrugs of γ-Aminobutyric Acid Analogues   总被引:2,自引:2,他引:0  
Abstract: Δ'-Pyrroline, S-methyl-Δ'-pyrroline, and 5.5-dimethyl-Δ'-pyrroline have been identified as substances metabolized to γ-aminobutyric acid (GABA), 4-aminopentanoic acid (raethyl GABA), and 4-amino-4-methylpen-tanoic acid (dimethyl GABA), respectively. An enzyme system residing in the soluble fraction of rabbit liver catalyzes the conversion of Δ'-pyrroline to GABA and its lactam, 2-pyrrolidinone. Acetaldehyde, allopurinol, and cyanide inhibited the reaction. Incubation of deuterium-labeled Δ'-pyrroline with mouse brain homogenates produced deuterated GABA. Mouse liver 10,000 g supernatant and mouse brain homogenates converted S-methyl-Δ'-pyrroline to methyl GABA, and 5,5-dimethyl-Δ'-pyrroline to dimethyl GABA. Four hours after intraperitoneal injection of 5-methyl-Δ'-pyrroline (200 mg/kg), methyl GABA was detected in mouse brain (0.27 μ-mol/g). Dimethyl GABA (1.21 μmol/g) was determined in mouse brain 30 min after intraperitoneal administration of 5.5-dimethyl-Δ'-pyrroline (200 mg/kg). Neither methyl GABA nor dimethyl GABA penetrated into the central nervous system when administered in the periphery. The present studies suggest that pyrrolines may represent a chemical class of brain-penetrating precursors of pharmacologically active analogues of GABA.  相似文献   

6.
Abstract: The possibility that γ-hydroxybutyrate (GHB), a metabolite of γ-aminobutyric acid (GABA), may play a role in the CNS has recently come to attention. We describe here a sensitive and specific mass fragmento-graphic technique that allows the measurement of picomole amounts of GHB in single rat brain areas. Moreover, we show that GHB can accumulate postmortem, an effect that is blocked by the use of microwave irradiation to kill the animals. To understand further the relationship between GABA and GHB formation, we treated rats with drugs known to inferfere with GABA metabolism at different levels and concomitantly measured GABA and GHB in cerebral cortex and cerebellum. Isoniazide, which blocks the formation of GABA, also decreases GHB. Blockers of the catabolism of GABA, such as aminooxyacetic acid and γ-acetylenic GABA, increase GABA levels and decrease those of GHB. Sodium dipropylacetate increases both GABA and GHB, supporting the hypothesis that this effective antiepileptic drug also blocks in vivo the enzyme that converts succinic semialdehyde to succinic acid.  相似文献   

7.
The turnover rate of gamma-aminobutyric acid (GABA) in the rat striatum was estimated by measuring its accumulation after inhibition of GABA-transaminase (GABA-T) with gabaculine. Intrastriatal injections of 100 micrograms gabaculine induced a rapid and complete inhibition of GABA-T. GABA accumulation was linear with time for at least 60 min (estimated turnover rate = 25 nmol/mg protein/h). The accumulation of GABA after gabaculine administration in animals that had been treated with kainic acid (5 nmol intrastriatally, 7 days) was only 40% of the control value, indicating that a major fraction of the net increase in GABA content induced by gabaculine originates in kainic acid-sensitive neurons. Intrastriatal injection of a mixture of kainic acid (5 nmol) and gabaculine caused a net increase in striatal GABA content significantly greater than that observed in controls, suggesting that neuronal death induced by kainic acid is preceded by a period of increased neuronal activity. Glutamic acid, the putative neurotransmitter for the excitatory corticostriatal pathway, also produced a significant increase in striatal GABA accumulation when injected together with gabaculine. This effect was blocked by the administration of the glutamate receptor antagonist glutamic acid diethyl ester. The interactions between GABAergic neurons and other neurotransmitters present in the striatum were also analyzed.  相似文献   

8.
Abstract: N -Pivaloyl-leucyl–γ-aminobutyric acid (PLG) is a synthetic dipeptide with a partition coefficient of 1.67 in an ethyl acetate/water system that partially inhibits the synaptosomal uptake and activates the release of [U- 14C]-γ-aminobutyric acid ([U-14C]GABA). The displacement of GAB A from crude synaptic membranes by PLG occurs with an IC50 of 10−5 M . The compound has the capacity to cross the blood-brain barrier and increase central GABA levels. Its ED50 on cardiazol-induced convulsions is 60-65 mg/kg. PLG is resistant to hydrolysis by chymotrypsin and partially inhibits the proteolytic activity of trypsin.  相似文献   

9.
The specific binding of [3H]gamma-aminobutyric acid (GABA) to nigral GABA receptors has been studied in postmortem brains from controls and patients with Huntington's disease (HD). A specific increase in the number of high-affinity binding sites for [3H]GABA was observed in HD patients, analogous to changes observed in rat substantia nigra [3H]GABA binding after striatal kainic acid (KA) lesion. The results provide further support for the striatal KA lesion in the rat as an animal model of HD. The implications of the results for the proposed therapeutic potential of GABA agonists in HD are discussed.  相似文献   

10.
Abstract: This study compared the turnover of GABA neurons in different brain areas of the male rat and examined the effect of castration on GABA turnover in regions of the brain associated with the control of gonadotropin secretion. To estimate GABA turnover, GABA was quantified by HPLC in microdissected brain regions 0,30,60,90, and 120 min after inhibition of GABA degradation by aminooxyacetic acid (100 mg/kg, i.p.). GABA accumulation was linear in all areas for 90 min ( p < 0.01), and GABA turnover was estimated as the slope of the line formed by increased GABA concentration versus time, determined by linear regression. There was considerable regional variation both in the initial steady-state concentrations of GABA and in the rates of GABA turnover. Of 10 discrete brain structures, GABA turnover was highest in the medial preoptic nucleus and lowest in the caudate nucleus. Turnover times in the terminal fields of known GABAergic projection neurons ranged sevenfold, from 2.6 h in the substantia nigra to 0.4 h in the lateral vestibular nucleus. The effect of castration on GABA turnover in 13 microdissected brain regions was investigated by measuring regional GABA concentrations before and 30 min after injection of aminooxyacetic acid in intact rats or 2 or 6 days postcastration. Following castration, steady-state GABA concentrations were increased, and GABA turnover decreased in the diagonal band of Broca, the medial preoptic area, and the median eminence. GABA turnover increased in the medial septal nucleus and was unaffected in the cortex, striatum, and hindbrain. These results are consistent with the hypothesis that testosterone negative-feedback control of luteinizing hormone-releasing hormone involves steroid-sensitive GABAergic neurons in the rostral and medial basal hypothalamus.  相似文献   

11.
The function of membrane phospholipids (PL) in the regulation of gamma-aminobutyric acid (GABA) transport and GABA carrier binding has been investigated in organized cultures of rat cerebral cortex. The cellular lipid composition has been changed by growing the cells in a delipidated nutrient solution or by short-term exposure of the cells to PL emulsions. Introduction of PL into the cellular matrix was monitored by analysis of biologically active fluorescently labeled phosphatidylcholine (PC) or phosphatidylethanolamine (PE). Parinaroyl and dansyl derivatives were used. Conditions of maintenance as well as exogenously given PL affected the transport of GABA. Two transport systems were observed, one first-order system and one cooperative system. Saturated species of PC or PE reduced first-order GABA uptake with increase in chain length of the fatty acid residues. The effects of unsaturated PL were dependent upon the polar head. Unsaturated PC enhanced the capacity of the first-order transport of the amino acid. In comparison to cultures grown in lipid-free medium, introduction of diarachinoyl-PC into the cells increased the density of the first-order active transport sites by a factor of 8 and the affinity constant by a factor of 17. Diarachinoyl-PE reduced both kinetic parameters. GABA uptake via the cooperative system was enhanced by the unsaturated PE, not by PC. The role of endogenous PL and their asymmetric distribution was studied by application of phospholipase A2, C, and D. Stimulation of carrier activity was induced by hydrolysis of PL on the external leaflet. Inhibition occurred upon enzymatic degradation of external and cytoplasmic PL. Lipolysis also affected GABA receptor binding, suggesting that the effects observed represent the activity of both classes of binding sites, the carrier and the receptor. However the latter accounted for a small fraction of the binding. Transport of the amino acid was temperature sensitive. The temperature curve was shifted within two discontinuities, appearing in the Arrhenius plot as a function of membrane lipids. The results suggest a partitioning of the proteins between fluid and ordered lipid domains. Displacement of the protein may govern the rate constants and/or the effective protein concentration.  相似文献   

12.
The effect of a stressful manipulation on the metabolism of gamma-aminobutyric acid (GABA) in the rat brain was studied. Application of an immobilized stress to animals induced a significant increase in the striatal and hypothalamic GABA contents without affecting those in other central structures examined. It was also found that the increase in striatal GABA level preceded that in the hypothalamus. This increase in steady-state levels of GABA in the striatum and hypothalamus disappeared at 12 h after the termination of the application of stress for 3 h, which exhibited a maximal stimulatory action on the GABA contents in both central areas. The activity of L-glutamic acid decarboxylase was found to be significantly elevated in the striatum and hypothalamus following the stress application with a concomitant decrease in the content of L-glutamic acid, which is converted to GABA by the catalytic action of the latter enzyme. The in vivo turnover of GABA in the brain was estimated by taking advantages of the postmortem accumulation of GABA following decapitation and of the selective inhibitory action of a low dose of aminooxyacetic acid on the GABA degrading system, respectively. Analysis using these two different methods revealed that the cerebral turnover of GABA in vivo was not significantly altered under stressful situations despite of the increase in its steady-state level. These results suggest that central GABA system may respond to the input of painful stimuli resulting from the application of a severe physical and psychological stressor, in addition to the well-known functional alterations in catecholamine neurons. The functional significance of these alterations in the central GABA neurons is also discussed.  相似文献   

13.
Abstract: The effects of inhibitors of γ-aminobutyric acid (GABA) metabolism or uptake on GABA output from the cerebral cortex was studied by means of a collecting cup placed on the exposed cortex of rats anaesthetized with urethane. GABA was identified and quantified by a mass-fragmentographic method. Ethanolamine-O-sulphate (10−2 M ) applied directly on the cerebral cortex caused a long-lasting twofold increase in GABA output, whereas dl -2, 4-diaminobutyric acid (5 × 10−3 M ) caused a sevenfold increase and β -alanine was inactive. The results indicate that glial uptake has little effect on GABA inactivation in the cerebral cortex. The inhibition of neuronal uptake seems a more effective tool to increase GABA concentration in the synaptic cleft, and consequently also in GABA output, than the inhibition of GABA metabolism.  相似文献   

14.
Abstract: The concentration of γ-aminobutyric acid (GABA) in the human ovary and the capacity of a membrane preparation from the same organ to bind [3H]GABA specifically were examined. The GABA concentration in the ovary was found to be 214 ± 66 nmol/g frozen tissue (mean ± SEM of six independent determinations). Moreover, a single population of high-affinity GABA binding sites has been identified in the ovarian membranes. The apparent dissociation constant ( K d) and maximum binding capacity ( B max) were 38.3 n M and 676 fmol/mg protein, respectively. The specific binding of [3H]GABA was displaced by muscimol, unlabelled GABA, or (+)bicuculline, but was unaffected by (±)baclofen and picrotoxin. The present results show that GABA and an extremely high density of GABAA receptor binding sites are present in the human ovary, indicating a physiological significance of this amino acid in the female reproductive system.  相似文献   

15.
The conversion of succinic semialdehyde into gamma-aminobutyric acid (GABA) by GABA-transaminase was measured in rat brain homogenate in the presence of different concentrations of the cosubstrate glutamate. The calculated kinetic parameters of succinic semialdehyde for GABA-transaminase were a limiting Km value of 168 microM and a limiting Vmax value of 38 mumol g-1 h-1. Combination with previously obtained data for the conversion of GABA into succinic semialdehyde revealed a kEq value of 0.04, indicating that equilibrium of GABA-transaminase is biased toward the formation of GABA. The increased formation of GABA in the presence of succinic semialdehyde was not due to an increased conversion of glutamate into GABA by glutamic acid decarboxylase. Therefore these results indicate that succinic semialdehyde can act as a precursor for GABA synthesis.  相似文献   

16.
Ethanol and the γ-Aminobutyric Acid-Benzodiazepine Receptor Complex   总被引:1,自引:2,他引:1  
Abstract: Ethanol appears to enhance γ-aminobutyric acid (GABA)-mediated synaptic transmission. Using radioligand binding techniques, we investigated the possibility that the GABA-benzodiazepine receptor complex is the site responsible for this effect. Ethanol at concentrations up to 100 m M failed to alter binding of [3H]flunitrazepam (FNZ), [3H]Ro 15-1788, or [3H]methyl-γ-carboline-3-carboxylate (MBCC) to benzodiazepine receptors, or of [3H]muscimol to GABA receptors in rat brain membranes. Scatchard analyses of the binding of these radioligands at 4°C and 37°C revealed no significant effects of 100 m M ethanol on receptor affinity or number. A variety of drugs as well as chloride ion increased binding of [3H]FNZ and/or [3H]muscimol, but these influences were not modified by ethanol. These findings indicate that ethanol probably potentiates GABAergic neurotransmission at a signal transduction site beyond the GABA-benzodiazepine receptor complex.  相似文献   

17.
18.
Abstract: The distributions of glutamate decarboxylase (EC 4.1.1.15), γ-aminobutyric acid transaminase (EC 2.6.1.19), and succinate semialdehyde dehydrogenase (EC 1.2.1.24) were determined in monkey retina. The decarboxylase was almost restricted to the inner plexiform layer. The transaminase was also highest in this layer, but activities were 40% as high in the adjacent third of the inner nuclear layer and in the ganglion cell and fiber layers. Succinate semialdehyde dehydrogenase was distributed very differently. Although it also showed a peak of activity in the inner plexiform layer, there was a second equal peak in the photoreceptor inner segment layer and a smaller peak in the outer plexiform layer, regions where both γ-aminobutyric acid transaminase and glutamate decarboxylase were essentially absent.  相似文献   

19.
Crude synaptic membranes treated with Triton X-100 (TX) bound gamma-aminobutyric acid (GABA) to two classes of receptor site in Na+-free 10 mM-Tris-sulfate buffer (pH 7.4), but to only a single class of receptor site in 10 mM Tris-sulfate buffer (pH 7.4), containing 150 mM-NaCl. The high-affinity receptor site in TX membranes was specifically masked in the presence of Na+. However, TX membranes incubated in Krebs-Ringer bicarbonate solution (pH 7.4) bound GABA to two classes of receptor site despite the presence of Na+. It was found that addition of bicarbonate ions to the Na+-containing 10 mM-Tris-sulfate buffer (pH 7.4) could restore that high-affinity class of GABA receptors, rendering both classes detectable. This finding suggests that both Na+ and HCO-3 may have a regulatory function on GABA binding to the receptor.  相似文献   

20.
Abstract: γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the mammalian retina, where it serves many roles in establishing complex response characteristics of ganglion cells. We now provide biochemical and physiological evidence that at least three subclasses of GABA receptors (A1, A2, and B) contribute to different types of synaptic integration. Receptor binding studies indicate that approximately three-fourths of the total number of [3H]GABA binding sites in retina are displaced by the GABAA receptor antagonist, bicuculline, whereas one-fourth are displaced by the GABA-B receptor agonist, baclofen. GABAA receptors can be described by a three-site binding model with KD values of 19 n M , 122 n M , and 5.7 μ M . Benzodiazepines and barbiturates potentiate binding to the GABAA site, which suggests that significant numbers of GABAA receptors are coupled to regulatory sites for these compounds and thus are classified as GABAA1 receptors. The response to pentobarbital appears to involve a conversion of low-affinity sites to higher-affinity sites, and is reflected in changes in the densities of sites at different affinities. Functional studies were used to establish which of the different receptor subclasses regulate release from cholinergic amacrine cells. Our results show that GABA suppresses light-evoked [3H]acetylcholine release via GABAA2 receptors not coupled to a benzodiazepine or barbiturate regulatory site, and enhances release via GABAB receptors. GABAA1 sites do not appear to control acetylcholine release in rabbit retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号