首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gill  C. W.  Poulet  S. A. 《Hydrobiologia》1988,167(1):303-310
An experimental system incorporating a computerized micro-impedance unit has been used to make direct measurements of the activity of copepod cephalic appendages. As the appendages are used to both propel the copepod through water and handle particles, it follows that appendage activity reflects feeding behaviour.To investigate the sensory feeding behaviour of copepods, their activity was recorded with food stimuli varying in size and chemical composition. Sample impedance traces are given for the appendage movements of Temora longicornis in the presence of: 1 — filtered seawater; 2 — beads; 3 — phytoplankton cells; 4 — dissolved free amino acids. The normal appendage movements shown in filtered seawater were modified when copepods were offered particles and dissolved chemicals. Results show that chemical and mechanical stimuli are responsible for the recognition and selection of food. Impedance traces distinguish between behavioural responses such as: antennule flicks, leg kicks, combing, handling and rejection of particles. Spectral analyses of traces have demonstrated that differences in beat pattern are significant.Paper presentation, at the Third International Conference on Copepoda. British Museum (Natural History), London, U. K., 10–14 August, 1987.  相似文献   

2.
The benthic harpacticoid copepodParamphiascella fulvofasciata Rosenfield & Coull was collected from holdfasts ofLaminaria hyperborea from a subtidal area of Helgoland (North Sea). All developmental stages ofP. fulvofasciata are raptorial feeders. The feeding of the nauplii is advanced by a marginal setule-crest of the labrum which prevents food-particles from being swept away. The oral appendages of the copepodites circumscribe a frustal space ventral to the mouth which facilitates uptake of food-particles. The nauplii are not able to swim and perform stalking movements with their antennal endopodites. Good swimming ability as well as digging-in-behaviour and negative phototaxis of the copepodites indicate epi- as well as inbenthic mode of life. Several life-cycle characters are described. Precopula lasts ca. one day. The mean egg-number is 27, and mean egg-diameter is 87 × 75 µm. The number of nauplii per egg (double)-sac amounts to 25–30. Developmental time at 19°C is 6–9 days (nauplii) and 20–24 days (copepodites). The whole developmental period lasts 28 days. The maximal lifespan in the laboratory is 193 days. Sex-ratio is almost balanced. Females produce egg-sacs more than 3.5 times during their life period. Seasonal effects on reproductive activity have not been detected in laboratory cultures.  相似文献   

3.
Bacterivory by the rotifer Brachionus plicatilis Müller, nauplii and copepodites of the copepods Centropages Krøyer sp. and Acartia tonsa Dana, and the tintinnid Favella panamensis Kofoid & Campbell was examined using fluorescently labelled bacteria (FLB) and epifluorescence microscopy. FLB were < 1 μm in diameter, and were offered at environmental concentrations (1.47−9.08 × 106 cells·ml−1). FLB were visible within rotifers, nauplii, copepodites, and tintinnids, confirming ingestion. Rotifer clearance rates (32–418 μl·animal−1·h−1) exhibited no relation with FLB concentration. In some cases rates of clearance of FLB by rotifers were different with alternative phytoplankton food (Nanochloris Naumann sp.) than in replicates with FLB alone, whereas in other cases presence of alternative food exhibited no clear effects on rates of ingestion of FLB. Clearance rates for all six naupliar stages of A. tonsa nauplii (0–320 μl·animal−1·h−1) were stage-related, with higher rates by NIII-VI nauplii than NI-II nauplii. Nauplii had higher rates of clearance of FLB in the absence of alternative phytoplankton food (Isochrysis Parke sp.). Clearance rates of FLB by a single stage of Centropages sp. nauplii, A. tonsa CI copepodites and F. panamensis (each obtained at only a single food concentration of either 1.5 or 5.0 × 106 cells·ml−1) were within the range of 85–142 μl·animal−1·h−1. These ranges were similar to those of rotifers and A. tonsa nauplii. This is the first report of FLB ingestion by metazoan marine microzooplankton. Although rotifers and ciliates might be expected to ingest small particles such as FLB using ciliary induced feeding currents, the means by which nauplii and copepodites eat FLB is less clear. We propose that they may “eat” bacteria as they “drink” to osmoregulate.  相似文献   

4.
Synopsis Acará, Geophagus brasiliensis, and red-breasted bream, Tilapia rendalli, are important planktivorous cichlids in southern Brazilian lakes and reservoirs. In laboratory experiments, I quantified behavior and selectivity of different sizes of these two fish feeding on lake zooplankton. Feeding behavior depended on fish size. Fish < 30 mm were visual feeders. Fish 30–50 mm either visually fed or pump-filter fed depending on zooplankton size. Fish > 70 mm were pump-filter feeders. Replicate 1 h feeding trials revealed that, as the relative proportions of prey changed during an experiment, acará (30–42 mm, standard length) and tilapia (29–42 mm) shifted from visual feeding on large evasive copepods to filter feeding on small cladocerans and rotifers. Electivity and feeding rate increased with prey length, but were distinct for similar-sized cladocerans and copepods. Visual/filter-feeding fish had lowest electivities for small and poorly evasive rotifers and cyclopoid nauplii. They fed non-selectively on cyclopoid copepodites, had intermediate electivities for calanoid nauplii and small cladocerans, and had highest electivities for large cladocerans, cyclopoid adults, and calanoid copepodites and adults. Although belonging to different cichlid genera and native to South America and Africa, respectively, acará and red-breasted bream (= congo tilapia) exhibited similar selectivity for zooplankton. Apparently, few stereotyped feeding behaviors have evolved during the acquisition of microphagy in fish. Shift in feeding modes allows these two species to optimally exploit the variable and dynamic patchy distribution of planktonic resources.  相似文献   

5.
In Lake Wujka, a shallow, polymictic Antarctic lake situated at 15 m from the seashore, several yearly cohorts occur of the copepod Boeckella poppei and one of the fairy shrimp Branchinecta gaini. There is circumstantial evidence that the two species compete for food, and perhaps adult fairy shrimp feed on the nauplii of the copepod. Both species are positively influenced by a measure of salinity. However, when autumn storms massively sweep seawater into the lake, all fairy shrimp are wiped out; no hatching occurs until next spring. In B. poppei, some nauplii and copepodites survive or hatch after the salt flows out of the lake. This is an advantage to the copepod that may balance its coexistence with the shrimp. Its cycle is, however, aborted by the freezing of the lake. In contrast to many other Antarctic lakes, the life cycle of the crustaceans is therefore controlled by salinity rather than freezing.  相似文献   

6.
Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water.  相似文献   

7.
Effects of enhanced ultraviolet B (UV-B, 280-320 nm) on copepods have gained particular attention in recent years. In this study, we investigated the effects of UV-B radiation on ingestion, fecundity, population dynamics and antioxidant enzyme activities of copepod Schmackeria inopinus exposed to varying doses of UV-B irradiance. Artificial UV-B radiation resulted in an increased mortality of nauplii, copepodites and adults with increasing UV-B doses. Nauplii and copepodites were more sensitive to UV-B radiation than adults, and adult males had a higher UV-B radiation susceptivity in comparison with adult females. Both ingestion rates and proportion of gravid females decreased with the increase of UV-B doses; and at the same time, we also observed that adult females had higher ingestion rates as compared with adult males. In comparison with the control, the abundance of the treatment significantly decreased. Antioxidant enzyme (GPx and GR) activities attained a significant increase at lower UV-B radiation doses when compared to the control, but declined at higher UV-B doses. These results suggested that enhanced UV-B radiation might change the species composition of copepods. Our study also showed that antioxidant enzymes might protect S. inopinus against UV-induced oxidative damage.  相似文献   

8.
Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae) and by the nauplii of one feeding-current feeding species (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey.  相似文献   

9.
Acute toxicities of crude oil and crude oil water accommodated hydrocarbon fraction (WAF) are relatively well documented, but data on the biological effects of chronic exposures to WAF on species and populations are scarce. South Louisiana Sweet crude oil was used to assess the effects of crude oil WAF on the copepod Amphiascus tenuiremis' survival, development and reproduction. Effects were evaluated using a 96-well microplate full life-cycle toxicity test, a test that allows tracking of individuals from the nauplius stage to sexual maturation and reproduction. Briefly, 24-h hatched nauplii were followed to adulthood (ni = ≥ 120 nauplii/treatment) in individual glass-coated microplate wells containing 200 μL of seawater solution. Treatments consisted of 10%, 30%, 50% and 100% Louisiana WAF, with seawater used as control. Nauplii were monitored through development to adulthood, and sexually mature virgin copepods were mated pairwise in wells containing original rearing treatments. Nauplius-to-copepodite survival was reduced by 57% in exposures to 100% WAF, relative to controls (88 ± 3%), and copepodite-to-adult survival was reduced by 18% in the 50% WAF, relative to controls (98 ± 3%). Analysis of development curves showed that nauplii in the 10% WAF developed significantly faster into copepodites, while nauplii in the 50% WAF developed significantly slower than controls. Although the naupliar developmental rate in the 100% WAF was not significantly different from the control, these nauplii showed an average 1.4 day delay in development into copepodites. Similarly, copepodite development into mature females and males was significantly enhanced by 1.2 to 1.8 days and delayed by 1.9 to 2.2 days (p < 0.05) in the 10% and 50% WAFs, respectively, compared to controls. Although the copepodite developmental rate in the 100% WAF was not significantly different from the control, these copepodites still showed an average 1.5 and 2.1 day delay in development into females and males, respectively. Analysis of reproductive endpoints showed that fertility was the only endpoint negatively affected by WAFs; reproductive failure increased by 30% and 41% in exposures to 30% and 100% WAF, respectively, compared to controls (3.33 ± 4.71%). Leslie matrix population projections based on empirical microplate data indicated lower production rates through three generations of exposure to WAFs. Furthermore, a comparison between NIST and Louisiana crude oil WAFs using the same life-cycle approach indicated a greater chronic toxicity for the Louisiana WAF and an overall developmental delay in exposures to high WAFs (50% and 100% WAFs) from both crude oil types.  相似文献   

10.
We investigated if (1) dissolved compounds excreted by Phaeocystis globosa and (2) transparent exopolymer particles (TEP) formed from carbohydrates excreted into the water affect the feeding of nauplii and females of the calanoid copepod Temora longicornis during a P. globosa bloom. Copepod grazing on the diatom Thalassiosira weissflogii in the presence of these possible grazing deterrents was measured during three successive weeks of a mesocosm study, simulating the development of a P. globosa bloom. Our results demonstrate no indication for the presence of feeding deterrents in the dissolved phase, but a strong inhibitory effect of transparent exopolymer particles (TEP) on the consumption of algae by both nauplii and adult copepods. The inhibitory effect of TEP was connected to the accumulation of DOM during the progress of the bloom. We suggest that a reduction in the grazing pressure of zooplankton may increase the survival of the liberated single cells during disruption of colonies and allow seeding populations to persist. Furthermore, P. globosa reduces the trophic efficiency of the food web not only by withdrawal of its colonies from grazing but also by a relaxation of the grazing pressure on co-occurring phytoplankton and by alteration of the food web structure via TEP production.  相似文献   

11.
A series of single-factor in situ experiments was conductedin a mesotrophic lake in Brandenburg, North Germany, to studythe predatory impact of Eudiaptomus graciloides (adults, copepodites,nauplii), cyclopoid copepods (adult Diacyclops bicuspidatus,Thermocyclops oithonoides) and daphnids (adult Daphnia hyalina,Daphnia cucullata) on the microbial community (bacteria, autotrophicpicoplankton, flagellates, ciliates). All zooplankton speciestested reduced the ciliate community significantly and ingestionrates were always higher for ciliates in the 20–55 µmsize category as compared to smaller ciliates (10–20 µm).Adult E.graciloides, which exhibited the highest predatory impacton ciliates, differed from cyclopoids and daphnids by theirability to decimate ciliates to very low abundances. Ingestionrates of ciliates by the crustacean zooplankton followed thesequence E.graciloides > daphnids = cyclopoids = copepodites.While top-down control was evident for ciliates, top-down effectsdown to the autotrophic picoplankton and flagellates were mostlyrestricted to Daphnia-dominated treatments. Top-down effectswere never strong enough to produce negative bacterial growthrates. For all zooplankton tested, clearance rates for ciliatesexceeded those for phytoplankton. Besides the potential of thecrustacean zooplankton to influence the structure of ciliatecommunities, ciliates may contribute to the energy demands ofcopepods and daphnids, especially when phytoplankton resourcesare limited.  相似文献   

12.
We examined the effects of UVB radiation on hatching success of eggs, survival of various naupliar and copepodite stages, and feeding and egg production of adult females of the brackish-water copepod, Sinocalanus tenellus, by exposure to varying doses of UVB irradiance in the laboratory. Artificial UVB radiation resulted in an increased mortality of eggs, nauplii and copepodites with increasing UVB doses. UVB induced damage was stage-specific with eggs being most susceptible (LD50= 4.1 kJ m–2 ) and adult females being least susceptible (LD50= 16.7 kJ m–2). Effects on feeding and egg production of adult females were significantly evident at UVB doses higher than 11.0 kJ m–2 and 7.0 kJ m–2, respectively. We also examined the photorepair response of eggs and various developmental stages in simultaneous irradiation of UVB and enhanced PAR. With enhanced PAR there was a considerable recovery against UVB damage, being higher for younger animals than older ones. In nature, however, solar UVB radiation may rarely cause appreciable damage to S. tenellus population due to optically high attenuation properties of their habitat waters.  相似文献   

13.
Spatial dynamics of phytoplankton blooms and Calanus finmarchicuswere analysed in a large-scale oceanic area (10274 km) in theNE Norwegian Sea (69–71°N, 12–16°E). Dataon hydrography, chlorophyll a (Chl a) and mesozooplankton (netsamples and Optical Plankton Counter) were collected in surfacewaters (0–30 m) during spring and early summer 2003. Spatialpatterns of copepodites in relation to hydrography and Chl aconcentration were analysed by constrained correspondence analysis.Distribution of phytoplankton and C. finmarchicus was highlypatchy. The overwintering generation (CV and adult females)had highest abundances in areas with phytoplankton blooms, whereasthe recruiting cohort (CII + CIII copepodites) was found inwater parcels with low Chl a concentration. Differences in recruitmentdynamics between the southern and northern Norwegian Sea arediscussed. Our data confirm the importance of phytoplanktonspring blooms in initiating the recruitment of C. finmarchicus.This opens up for a future mapping of sea surface chlorophyllto depict the large-scale variability in the demography of C.finmarchicus during the reproductive season in the NorwegianSea.  相似文献   

14.
Factors affecting the abundance of Triaenophorus crassus and Triaenophorus nodulosus procercoids in their copepod first intermediate host, Cyclops strenuus, and effects of infection on feeding behaviour, reproduction and survival of the host were studied experimentally. When exposed to the same number of coracidia, copepods harboured considerably less procercoids in the trials where ciliates or Artemia salina nauplii were given as alternative food items. The prevalence of infection was higher in adult copepods as compared with copepodite stage IV and stage V, and higher in stage V than in stage IV. The prevalences in adult females and males did not differ significantly from each other. The frequency of females carrying egg sacs was lower among infected than among exposed uninfected and unexposed copepods. The rate of feeding on Artemia nauplii remained at the same level in uninfected copepods, but decreased strongly in infected copepods during 7 days p.i. The survival of unexposed, exposed uninfected and infected copepods did not differ significantly from each other for the first 11 days post-exposure, but the mortality of infected copepods increased significantly after 3 weeks post-exposure. However, the rate of development and mortality of copepods might have been affected by the apparently arrested development of stage IV copepodites found in the experiment. Some of the contradictions between these results and earlier observations are suggested to be caused by the differences in the duration of exposure, intensity of infection and duration of observation post-exposure in the present study as compared with other experiments.  相似文献   

15.
Summary

Responses of larvae of two rhizocephalan species to changes in seawater temperature and salinity were studied under laboratory conditions. Peltogasterella gracilis parasitizes the hermit crab Pagurus pectinatus, which occurs at stable salinity and gradually changing temperature in summer. Sacculina polygenea is a parasite of the crab Hemigrapsus sanguineus, which lives in the intertidal zone in summer where salinity and temperature can fluctuate during the day. The development of both species is comprised of five naupliar stages and the cyprid stage, and it was considered successful if more than 50% of the nauplii attained the cyprid stage. P. gracilis nauplii successfully developed at 12–20°C and 30–34‰, but at 22°C successful development occurred in a narrower salinity range (32–34‰). All nauplii died both at 25°C and in 26‰. S. polygenea nauplii successfully reached the cyprid stage at higher temperatures (18–25°C) and a wider salinity range (18–34‰) than P. gracilis nauplii, but at 12°C and 16‰ larval development of S. polygenea was suppressed. Under favorable conditions, naupliar development lasted 3.5 days in P. gracilis and 2–3 days in S. polygenea. The cyprids of both rhizocephalan species demonstrated a greater resistance to temperature and salinity changes than nauplii. However, P. gracilis cyprids were active in a narrower salinity range (16–34‰), as compared to S. polygenea cyprids (8–34‰). Under favorable conditions the cyprids of both species survived for 6 to 10 days.  相似文献   

16.
Comprida lagoon is a shallow lagoon separated from the sea by a sand barrier. It has a brown-coloured freshwater with a high concentration of humic compounds. Its zooplankton community and limnological features were studied from March 1992 to December 1995. The lagoon was characterized by low transparency, acid water and relative constant physical–chemical features, except during sporadic marine entrances. The zooplankton, composed of holoplanktonic and meroplanktonic forms, consisted of 60 taxa. Eleven were permanent elements of the community: e.g. Bosminopsis deitersi, nauplii and copepodites of `Diaptomus' azureus. B. deitersi correlated positively with the lowest pH values and with the highest total dissolved nitrogen. Only four taxa correlated with chlorophyll-a concentration. Pigmentation in `D.' azureus is suggested to be as an energy reserve in a system where phytoplankton is probably light-limited.  相似文献   

17.
Stage IV and V copepodites were the dominant forms of Calanus finmarchicus, C. glacialis and C. hyperboreus in Kongsfjorden in late September 1997. Stage IV and V copepodites of C. glacialis and C. hyperboreus were rich in lipid, largely wax esters, and were well fitted to overwinter. Stage IV copepodites of C. finmarchicus were also rich in wax esters, but stage V copepodites of C. finmarchicus were less wax ester-rich. Large size increments between stage IV and V copepodites and between stage V copepodites and females were noted in C. finmarchicus. A very large increment between stage IV and V copepodites was noted for C. glacialis but the size difference between stage V copepodites and females was very small in this species. Particularly large increments were noted between stage IV and V copepodites of C. hyperboreus and also between stage V copepodites and females of this species. The very large, wax ester-rich C. hyperboreus is well adapted to survive the most extreme variations in the Arctic, in Arctic basin waters, whereas the smaller, wax ester-rich C. glacialis is adapted to survive less extreme Arctic variations, as in Arctic shelf waters. The smallest of the three, C. finmarchicus, is best adapted to survive the more predictable waters of the North Atlantic and the Barents Sea. Accepted: 3 January 2000  相似文献   

18.
Mesozooplankton distribution was investigated under the sea ice in the Kara Sea at five stations in February of 2002 by Juday net hauls. Copepods dominated the mesozooplankton community, accounting for 46–88% of the total abundance and 68–99% of the biomass. Oithona similis was the most abundant species in Yenisei Bay, being present with all age stages (including egg-carrying females). For the first time, Oithona atlantica (CIII–CV copepodites, females and males) were found in the southeastern Kara Sea. In the southern part, Copepoda nauplii prevailed in terms of total abundance while the mesozooplankton in the northwestern part was entirely dominated by older stages of Pseudocalanus minutus. The mesozooplankton structure appears to be determined by available food resources and increased water temperature due to a strong influence of warm Atlantic waters.  相似文献   

19.
Kennedy Roche 《Hydrobiologia》1990,198(1):163-183
Spatial overlap between Acanthocyclops robustus, with special emphasis on the adult females, and other zooplankton in one basin of a shallow (approximate depth of 2 m) eutrophic lake was studied.Horizontal distribution patterns were analysed on two dates. On both dates, most taxa examined showed large-scale patchiness between the three sections of the lake basin (approximate length of 1.2 km). Similarly, most taxa, with the important exception of the adult female Acanthocyclops robustus, were significantly patchily distributed on the small-scale (i.e. within sections). However, the intensity of such patchiness was, in general, relatively low. There was no consistent evidence of aggregation by the adult females or copepodites and adult males (the latter two were considered together) of the predator in such small-scale prey patches.Diurnal vertical distribution patterns were studied on two 24–25 hour periods. The first period was characterized by calm weather. Adult female, and perhaps male, Acanthocyclops robustus, Chydorus sphaericus, Bosmina Coregoni, Keratella cochlearis, Asplanchna species, Polyarthra vulgaris and Pompholyx sulcata seemed to show diurnal migration patterns, while seven other taxa showed consistent preferences for particular depths. Only copepod nauplii and Daphnia species were approximately evenly distributed. Negative correlations were found between the vertical distributions of the adult female predator and seven of the seventeen potential prey recognized.The first half of the second period was characterised by strong winds which abated during the second half. Most zooplankton taxa showed inconsistent heterogeneous vertical distributions or were homogeneously distributed with vertical heterogeneity developing towards the end of the period. Only Bosmina longirostris and Daphnia species seemed to show vertical migration patterns. Thus, no consistent vertical segregation between predator and prey was detected.  相似文献   

20.
近邻剑水蚤完成一个世代所需的时间随不同的温度而有差别,在一定的温度范围内,其时间与温度呈正相关,在6.5℃时为64.3天,20℃时仅为20.2天,当25℃时则发育减慢。    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号