首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms by which chronic infusion of an initially subpressor low dose of angiotensin II (ANG II) causes a progressive and sustained hypertension remain unclear. In conscious sheep (n = 6), intravenous infusion of ANG II (2 microg/h) gradually increased mean arterial pressure (MAP) from 82 +/- 3 to 96 +/- 5 mmHg over 7 days (P < 0.001). This was accompanied by peripheral vasoconstriction; total peripheral conductance decreased from 44.6 +/- 6.4 to 38.2 +/- 6.7 ml.min(-1).mmHg(-1) (P < 0.001). Cardiac output and heart rate were unchanged. In the regional circulation, mesenteric, renal, and iliac conductances decreased but blood flows were unchanged. There was no coronary vasoconstriction, and coronary blood flow increased. Ganglion blockade (125 mg/h hexamethonium for 4 h) reduced MAP by 13 +/- 1 mmHg in the control period and by 7 +/- 2 mmHg on day 8 of ANG II treatment. Inhibition of central AT(1) receptors by intracerebroventricular infusion of losartan (1 mg/h for 3 h) had no effect on MAP in the control period or after 7 days of ANG II infusion. Pressor responsiveness to incremental doses of intravenous ANG II (5, 10, 20 microg/h, each for 15 min) was unchanged after 7 days of ANG II infusion. ANG II caused no sodium or water retention. In summary, hypertension due to infusion of a low dose of ANG II was accompanied by generalized peripheral vasoconstriction. Indirect evidence suggested that the hypertension was not neurogenic, but measurement of sympathetic nerve activity is required to confirm this conclusion. There was no evidence for a role for central angiotensinergic mechanisms, increased pressor responsiveness to ANG II, or sodium and fluid retention.  相似文献   

2.
We sought to determine the longitudinal distribution of pulmonary vascular resistance (PVR) in acute lactic acidosis utilizing pulmonary artery and vein balloon occlusion techniques (Holloway et al. J. Appl. Physiol. 54: 840-851, 1983). In anesthetized dogs, both a systemic vein (I-V) infusion and systemic artery (I-A) infusion of L-lactic acid were studied to control for potential effects of factors other than pH on PVR. During progressive I-A infusion (n = 9) to a pH of 6.94 +/- 0.06 there was no significant change in PVR or its distribution. In contrast, I-V infusion (n = 9) to a pH of 7.08 +/- 0.09 increased median PVR from 3.6 to 21.7 mmHg.1(-1).min (P less than 0.001), due to an increase in middle segment resistance (0.0-15.4 mmHg.1(-1).min, P less than 0.02). Examination by light and electron microscopy demonstrated pulmonary capillary obstruction with hemolyzed erythrocyte (RBC) membranes with I-V infusion, but representative I-A animals did not demonstrate these findings. Conceivably, the systemic vascular bed filtered the fragmented RBC membranes in the I-A model, but this microvascular obstruction with altered RBCs and RBC fragments caused the pulmonary hypertension observed in the I-V infusion. We conclude that lactic acidosis does not increase pulmonary vascular tone in dogs, a finding compatible with most previous studies in which observed increases in PVR may be attributed to other effects from I-V acid infusion on circulating blood elements.  相似文献   

3.
The effects of acute administration of therapeutic doses (1-10 mg/kg) of pentoxifylline and aminophylline on the resistance of the systemic and pulmonary circuits in anaesthetized dogs and pigs were tested. During room air breathing, neither of the two substances caused a significant change in systemic vascular resistance (SVR) or pulmonary vascular resistance (PVR). During hypoxia (10% O2 and nitrogen), however, both substances caused a significant reduction in PVR (p less than 0.05) without affecting SVR. The largest dose of pentoxifylline decreased PVR from 7.8 +/- 2.8 to 4.4 +/- 1.5 in dogs and from 9.9 +/- 1.4 to 5.8 +/- 0.6 mmHg.L-1.min in pigs. Aminophylline was equally effective and selective in lowering PVR but not SVR during hypoxia. When SVR was elevated in dogs by continuous infusion of angiotensin, pentoxifylline lowered SVR from 139 +/- 27 to 83 +/- 20 mmHg.L-1.min (p less than 0.05). The simultaneous small elevation in PVR during angiotensin infusion was also attenuated to base-line value by pentoxifylline injection. These results suggest that xanthines, in therapeutic doses, can have a profound vasodilator effect on either the systemic or on the pulmonary circuit, only wherever the vessels are constricted. The vasodilatory effect of pentoxifylline is viewed as a second beneficial effect besides the benefit derived from its action on erythrocyte deformability.  相似文献   

4.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

5.
To gain insight into the role of adenosine (Ado) in exercise hyperemia, we compared forearm vasodilation induced by intra-arterial infusion of three doses of Ado with vasodilation during three workloads of forearm handgrip exercise in 27 human subjects. We measured forearm blood flow (FBF) using Doppler ultrasound and mean arterial pressure (MAP) via brachial artery catheters and calculated forearm vascular conductance (FVC = FBF/MAP) during each infusion dose or workload. We found that about half of the subjects demonstrated robust vasodilator responsiveness to both Ado infusion and exercise, and the other half demonstrated blunted vasodilator responsiveness to Ado infusion compared with exercise. In 15 subjects (identified as "Ado responders"), the change in FVC above baseline was 209 +/- 33, 419 +/- 57, and 603 +/- 75 ml.min(-1).100 mmHg(-1) for the low, medium, and high doses of Ado, respectively, and 221 +/- 35, 413 +/- 54, and 582 +/- 70 ml.min(-1).100 mmHg(-1) for the low, medium, and high exercise workloads, respectively. In the other 12 subjects (identified as "Ado nonresponders"), the change in FVC above baseline was 102 +/- 36, 113 +/- 42, and 151 +/- 54 ml.min(-1).100 mmHg(-1) for the low, medium, and high doses of Ado, respectively (P < 0.05 vs. Ado responders), whereas exercise hyperemia was not different from Ado responders (P > 0.05). Furthermore, infusion of NG-monomethyl-L-arginine (L-NMMA) blunted vasodilator responses to Ado infusion only in Ado responders (P < 0.01 vs. post-L-NMMA) and had no effect on exercise in either group. We also found differences in vasodilator responses to isoproterenol at all doses, but acetylcholine only at one dose, between Ado responders and nonresponders. We conclude that vasodilator responsiveness to Ado exhibits a bimodal distribution among human subjects involving differences in the contribution of nitric oxide to Ado-mediated vasodilation. Finally, our data support the concept that neither Ado nor nitric oxide is obligatory for exercise hyperemia.  相似文献   

6.
Plasma levels of IL-6 correlate with high blood pressure under many circumstances, and ANG II has been shown to stimulate IL-6 production from various cell types. This study tested the role of IL-6 in mediating the hypertension caused by high-dose ANG II and a high-salt diet. Male C57BL6 and IL-6 knockout (IL-6 KO) mice were implanted with biotelemetry devices and placed in metabolic cages to measure mean arterial pressure (MAP), heart rate (HR), sodium balance, and urinary albumin excretion. Baseline MAP during the control period averaged 114 +/- 1 and 109 +/- 1 mmHg for wild-type (WT) and IL-6 KO mice, respectively, and did not change significantly when the mice were placed on a high-salt diet (HS; 4% NaCl). ANG II (90 ng/min sc) caused a rapid increase in MAP in both groups, to 141 +/- 9 and 141 +/- 4 in WT and KO mice, respectively, on day 2. MAP plateaued at this level in KO mice (134 +/- 2 mmHg on day 14 of ANG II) but began to increase further in WT mice by day 4, reaching an average of 160 +/- 4 mmHg from days 10 to 14 of ANG II. Urinary albumin excretion on day 4 of ANG II was not different between groups (9.18 +/- 4.34 and 8.53 +/- 2.85 microg/2 days for WT and KO mice). By day 14, albumin excretion was nearly fourfold greater in WT mice, but MAP dropped rapidly back to control levels in both groups when the ANG II was stopped after 14 days. Thus the approximately 30 mmHg greater ANG II hypertension in the WT mice suggests that IL-6 contributes significantly to ANG II-salt hypertension. In addition, the early separation in MAP, the albumin excretion data, and the rapid, post-ANG II recovery of MAP suggest an IL-6-dependent mechanism that is independent of renal injury.  相似文献   

7.
Six-week-old Dahl salt-sensitive (S) and -resistant (R) rats received for 2 wk an intracerebroventricular infusion of aldosterone (Aldo) (22.5 ng/h) or vehicle containing artificial cerebrospinal fluid (aCSF) with 0.15 M Na+. At 8 wk, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious rats at rest, in response to air stress, and to an intracerebroventricular injection of the alpha2-adrenoceptor agonists guanabenz or ouabain. Baroreflex control of RSNA and HR was estimated by using intravenous phenylephrine and nitroprusside. In Dahl S but not Dahl R rats, Aldo raised resting MAP by 20-25 mmHg, doubled sympathoexcitatory and pressor responses to air stress and sympathoinhibitory and depressor responses to guanabenz, and impaired baroreflex function. In Dahl S but not Dahl R rats, Aldo significantly increased content of ouabain-like compounds (OLC) in the hypothalamus and attenuated excitatory responses to ouabain. Aldo did not affect water intake, plasma electrolytes, or OLC in plasma and adrenal glands. In another set of three groups of Dahl S rats, Aldo dissolved in aCSF containing 0.16, 0.15, or 0.14 M Na+ was infused intracerebroventricularly for 2 wk. CSF Na+ concentration ([Na+]) showed only a nonsignificant increase, but resting MAP increased from 111 +/- 3 mmHg in rats with Aldo in 0.14 M Na+ to 131 +/- 3 and 147 +/- 3 mmHg with Aldo in 0.15 and 0.16 M Na+, respectively (P < 0.05 for both). These findings indicate that in Dahl S rats, intracerebroventricular infusion of Aldo causes similar central responses as high salt intake, i.e., increases in brain OLC content, sympathetic hyperreactivity, and hypertension. The extent of the increase in blood pressure (BP) by intracerebroventricular Aldo depends on the [Na+] in the vehicle. In Dahl R rats, intracerebroventricular Aldo did not increase brain OLC, sympathetic reactivity, and BP, suggesting that in this rat strain, a decrease in central responsiveness to mineralocorticoids may contribute to its salt-resistant nature.  相似文献   

8.
Animal studies suggest that acute and chronic aldosterone administration impairs baroreceptor/baroreflex responses. We tested the hypothesis that aldosterone impairs baroreflex control of cardiac period [cardiovagal baroreflex sensitivity (BRS)] and muscle sympathetic nerve activity (MSNA, sympathetic BRS) in humans. Twenty-six young (25 +/- 1 yr old, mean +/- SE) adults were examined in this study. BRS was determined by using the modified Oxford technique (bolus infusion of nitroprusside, followed 60 s later by bolus infusion of phenylephrine) in triplicate before (Pre) and 30-min after (Post) beginning aldosterone (experimental, 12 pmol.kg(-1).min(-1); n = 10 subjects) or saline infusion (control; n = 10). BRS was quantified from the R-R interval-systolic blood pressure (BP) (cardiovagal BRS) and MSNA-diastolic BP (sympathetic BRS) relations. Aldosterone infusion increased serum aldosterone levels approximately fourfold (P < 0.05) and decreased (P < 0.05) cardiovagal (19.0 +/- 2.3 vs. 15.6 +/- 1.7 ms/mmHg Pre and Post, respectively) and sympathetic BRS [-4.4 +/- 0.4 vs. -3.0 +/- 0.4 arbitrary units (AU).beat(-1).mmHg(-1)]. In contrast, neither cardiovagal (19.3 +/- 3.3 vs. 20.2 +/- 3.3 ms/mmHg) nor sympathetic BRS (-3.8 +/- 0.5 vs. -3.6 +/- 0.5 AU.beat(-1).mmHg(-1)) were altered (Pre vs. Post) in the control group. BP, heart rate, and MSNA at rest were similar in experimental and control subjects before and after the intervention. Additionally, neural and cardiovascular responses to a cold pressor test and isometric handgrip to fatigue were unaffected by aldosterone infusion (n = 6 subjects). These data provide direct experimental support for the concept that aldosterone impairs baroreflex function (cardiovagal and sympathetic BRS) in humans. Therefore, aldosterone may be an important determinant/modulator of baroreflex function in humans.  相似文献   

9.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

10.
To test the hypothesis that high osmolality acts in the brain to chronically support mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA), the osmolality of blood perfusing the brain was reduced in conscious water-deprived and water-replete rats by infusion of hypotonic fluid via bilateral nonoccluding intracarotid catheters. In water-deprived rats, the intracarotid hypotonic infusion, estimated to lower osmolality by approximately 2%, decreased MAP by 9+/-1 mmHg and LSNA to 86+/-7% of control; heart increased by 25+/-8 beats per minute (bpm) (all P<0.05). MAP, LSNA, and heart rate did not change when the hypotonic fluid was infused intravenously. The intracarotid hypotonic fluid infusion was also ineffective in water-replete rats. Prior treatment with a V1 vasopressin antagonist did not alter the subsequent hypotensive and tachycardic effects of intracarotid hypotonic fluid infusion in water-deprived rats. In summary, acute decreases in osmolality of the carotid blood of water-deprived, but not water-replete, rats decreases MAP and LSNA and increases heart rate. These data support the hypothesis that the elevated osmolality induced by water deprivation acts via a region perfused by the carotid arteries, presumably the brain, to tonically increase MAP and LSNA and suppress heart rate.  相似文献   

11.
Recent studies have shown that angiotensin-converting enzyme (ACE) inhibitors attenuate endothelin-1 (ET-1)-induced hypertension, but the mechanisms for this effect have not been clarified. Initial experiments were conducted to contrast the effect of the ACE inhibitor enalapril, the combined ACE-neutral endopeptidase inhibitor omapatrilat, and the angiotensin II receptor antagonist candesartan on the hypertensive and renal response to ET-1 in anesthetized Sprague-Dawley rats. Acute intravenous infusion of ET-1 (10 pmol x kg(-1) x min(-1)) for 60 min significantly increased mean arterial pressure (MAP) from 125 +/- 8 to 145 +/- 8 mmHg (P < 0.05) and significantly decreased glomerular filtration rate (GFR) from 0.31 +/- 0.09 to 0.13 +/- 0.05 ml x min(-1) x 100 g kidney wt(-1). Pretreatment with enalapril (10 mg/kg iv) before ET-1 infusion inhibited the increase in MAP (121 +/- 4 vs. 126 +/- 4 mmHg) before and during ET-1 infusion, respectively (P < 0.05) without blocking the effect of ET-1 on GFR. In contrast, neither omapatrilat (30 mg/kg) nor candesartan (10 mg/kg) had any effect on ET-1-induced increases in MAP or decreases in GFR. To determine whether the effect of enalapril was due to the decrease in angiotensin II or increase in kinin formation, rats were given REF-000359 (1 mg/kg iv), a selective B(2) receptor antagonist, with or without enalapril before ET-1 infusion. REF-000359 completely blocked the effect of enalapril on ET-1 infusion (MAP was 117 +/- 5 vs. 135 +/- 5 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 alone had no effect on the response to ET-1 infusion (MAP was 117 +/- 4 vs. 144 +/- 4 mmHg before and during ET-1 infusion, respectively, P < 0.05). REF-000359 with or without enalapril had no significant effect on the ability of ET-1 infusion to decrease GFR. These findings support the hypothesis that decreased catabolism of bradykinin and its subsequent vasodilator activity oppose the actions of ET-1 to increase MAP.  相似文献   

12.
It has been shown that the area postrema (AP) plays a role in the development of certain types of chronic angiotensin II (ANG II)-induced hypertension in the rat but is not of great importance in the salt sensitivity of arterial pressure. It has recently been proposed, however, that elevated sodium levels may exacerbate the hypertensive effects of ANG II, which by itself dramatically affects salt sensitivity, by acting at sodium-sensing neurons in certain circumventricular organs of the brain. Thus the interactions of ANG II, sodium, and the central nervous system remain to be fully understood. The purpose of this study was to examine the role of the AP in ANG II-induced hypertension during periods of normal and elevated dietary salt. We hypothesized that an intact AP was necessary for the full development of hypertension under chronic ANG II infusion and that its role would be pronounced during periods of increased dietary sodium. To test this, male Sprague-Dawley rats underwent ablation of the area postrema (APx, n = 6) or sham operation (sham, n = 6). After 3 wk of recovery, rats were instrumented with radiotelemetry transducers for constant blood pressure and heart rate monitoring and venous catheters for vehicle infusion. After a 3-day control period of 0.9% saline infusion (7 ml/day) and 0.4% dietary sodium, a 10-day period of ANG II infusion (10 ng.kg(-1).min(-1)) was begun, immediately followed by a second 10-day period during which rats were fed a 4.0% sodium diet. By day 6 of ANG II infusion, mean arterial pressure (MAP) in APx rats had increased to 139 +/- 4 mmHg, whereas MAP in sham rats had increased to 126 +/- 3 mmHg. This difference was found to be significant and continued through day 1 of the high-salt period, after which MAP of the two groups had risen to similar levels. On day 9 of high salt, MAP was again observed to be significantly higher (162 +/- 1 mmHg) in APx rats when compared with sham rats (147 +/- 4 mmHg.) These results do not support the hypothesis that the AP is necessary for the full development of ANG II-induced hypertension at normal or elevated levels of dietary sodium.  相似文献   

13.
It has been suggested that nitric oxide (NO) is a key modulator of both baroreceptor and exercise pressor reflex afferent signals processed within the nucleus tractus solitarius (NTS). However, studies investigating the independent effects of NO within the NTS on the function of each reflex have produced inconsistent results. To address these concerns, the effects of microdialyzing 10 mM L-arginine, an NO precursor, and 20 mM N(G)-nitro-L-arginine methyl ester (L-NAME), an NO synthase inhibitor, into the NTS on baroreceptor and exercise pressor reflex function were examined in 17 anesthetized cats. Arterial baroreflex regulation of heart rate was quantified using vasoactive drugs to induce acute changes in mean arterial pressure (MAP). To activate the exercise pressor reflex, static hindlimb contractions were induced by electrical stimulation of spinal ventral roots. To isolate the exercise pressor reflex, contractions were repeated after barodenervation. The gain coefficient of the arterial cardiac baroreflex was significantly different from control (-0.24 +/- 0.04 beats.min(-1).mmHg(-1)) after the dialysis of L-arginine (-0.18 +/- 0.02 beats.min(-1).mmHg(-1)) and L-NAME (-0.29 +/- 0.02 beats.min(-1).mmHg(-1)). In barodenervated animals, the peak MAP response to activation of the exercise pressor reflex (change in MAP from baseline, 39 +/- 7 mmHg) was significantly attenuated by the dialysis of L-arginine (change in MAP from baseline, 29 +/- 6 mmHg). The results demonstrate that NO within the NTS can independently modulate both the arterial cardiac baroreflex and the exercise pressor reflex. Collectively, these findings provide a neuroanatomical and chemical basis for the regulation of baroreflex and exercise pressor reflex function within the central nervous system.  相似文献   

14.
Studies were undertaken with adult male rats to test the hypothesis that euglycemic hyperinsulinemia would alter mean arterial blood pressure (MAP) and heart rate (HR) relationships by activation of the sympathetic nervous system. Conscious rats were infused either with insulin or control vehicle (0, 0.47, 1.5, 4.7, 15.0 mU.kg-1.min-1) for 75 min before injection of hexamethonium. Compared with the control period, insulin infusion significantly increased MAP by 7.1 +/- 0.1, 12.7 +/- 2.0, and 19.7 +/- 0.3 (SE) mmHg and HR by 44 +/- 8.4, 66 +/- 10.3, and 95 +/- 6.3 beats/min, respectively, during the three highest rates of infusion. The dose-dependent increases in MAP and HR were due to increases in the activity of hexamethonium-sensitive pathways. In chemically sympathectomized rats, insulin infusion did not produce a significant increase in either MAP or HR. The influence of exogenous norepinephrine on MAP and HR was also studied after insulin infusion. Compared with the insulin-vehicle infusion, insulin infusion significantly depressed (P less than 0.05) the norepinephrine dose-response increase in MAP. In addition, isolated smooth muscle strips were studied to determine the influence of insulin on their in vitro responses to increasing doses of norepinephrine. Although insulin did not alter contractility, it significantly (P less than 0.05) decreased the sensitivity of the vascular strips to norepinephrine. Collectively, the data from these euglycemic experiments indicated that infusions of insulin caused increases in HR and MAP because of activation of the sympathetic nervous system, even though the responsiveness of the vascular smooth muscle was depressed.  相似文献   

15.
Animal studies suggest that prostanoids (i.e., such as prostacyclin) may sensitize or impair baroreceptor and/or baroreflex responsiveness depending on the site of administration and/or inhibition. We tested the hypothesis that acute inhibition of cyclooxygenase (COX), the rate-limiting enzyme in prostanoid synthesis, impairs baroreflex regulation of cardiac period (R-R interval) and muscle sympathetic nerve activity (MSNA) in humans and augments pressor reactivity. Baroreflex sensitivity (BRS) was determined at baseline (preinfusion) and 60 min after (postinfusion) intravenous infusion of a COX antagonist (ketorolac; 45 mg) (24 +/- 1 yr; n = 12) or saline (25 +/- 1 yr; n = 12). BRS was assessed by using the modified Oxford technique (bolus intravenous infusion of nitroprusside followed by phenylephrine). BRS was quantified as the slope of the linear portion of the 1) R-R interval-systolic blood pressure relation (cardiovagal BRS) and 2) MSNA-diastolic blood pressure relation (sympathetic BRS) during pharmacological changes in arterial blood pressure. Ketorolac did not alter cardiovagal (19.4 +/- 2.1 vs. 18.4 +/- 2.4 ms/mmHg preinfusion and postinfusion, respectively) or sympathetic BRS (-2.9 +/- 0.7 vs. -2.6 +/- 0.4 arbitrary units.beat(-1).mmHg(-1)) but significantly decreased a plasma biomarker of prostanoid generation (plasma thromboxane B2) by 53 +/- 11%. Cardiovagal BRS (21.3 +/- 3.8 vs. 21.2 +/- 3.0 ms/mmHg), sympathetic BRS (-3.4 +/- 0.3 vs. -3.2 +/- 0.2 arbitrary units.beat(-1).mmHg(-1)), and thromboxane B2 (change in -1 +/- 12%) were unchanged in the control (saline infusion) group. Pressor responses to steady-state incremental (0.5, 1.0, and 1.5 microg.kg(-1).min(-1)) infusion (5 min/dose) of phenylephrine were not altered by ketorolac (n = 8). Collectively, these data indicate that acute pharmacological antagonism of the COX enzyme does not impair BRS (cardiovagal or sympathetic) or augment pressor reactivity in healthy young adults.  相似文献   

16.
The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.  相似文献   

17.
In this work we determined by telemetry the cardiovascular effects produced by Ang II infusion on blood pressure (BP) and heart rate (HR) in aged rats. Male Wistar aged (48-52 weeks) and young (12 weeks) rats were used. Ang II (6 microg/h, young, n=6; aged, n=6) or vehicle (0.9% NaCl 1 microl/h, young, n=4; aged, n=5) were infused subcutaneously for 7 days, using osmotic mini-pump. The basal diurnal and nocturnal BP values were higher in aged rats (day: 98+/-0.3 mm Hg, night: 104+/-0.4 mm Hg) than in the young rats (day: 92+/-0.2 mm Hg, night: 99+/-0.2 mm Hg). In contrast, the basal diurnal and nocturnal HR values were significantly smaller in the aged rats. Ang II infusion produced a greater increase in the diurnal BP in the aged rats (Delta MAP=37+/-1.8 mm Hg) compared to the young ones (Delta MAP=30+/-3.5 mm Hg). In contrast, the nocturnal MAP increase was similar in both groups (young rats; Delta MAP=22+/-3.0 mm Hg, aged rats; Delta MAP=24+/-2.6 mm Hg). During Ang II infusion HR decreased transiently in the young rats. An opposite trend was observed in the aged rats. Ang II infusion also inverted the BP circadian rhythm, in both groups. No changes in HR circadian rhythm were observed. These differences suggest that the aging process alters in a different way Ang II-sensitive neural pathways involved in the control of autonomic activity.  相似文献   

18.
We have developed a new model of chronic baroreceptor unloading (CBU) in the dog. Initial characterization of the model indicated that CBU increased mean arterial pressure (MAP) by an average of 22 mmHg for 7 days. The goal of the present study was to replicate the previous study using telemetry to record MAP continuously and to determine the effects of CBU (n = 7) on chronic regulation of MAP. We also prepared a group of dogs with sinoaortic denervation (SAD, n = 6) to compare the time course of changes in MAP in the two models. Control levels (7 day average +/- SE) of MAP in the CBU and SAD groups were 94 +/- 2 and 94 +/- 1 mmHg, respectively. MAP averaged 124 +/- 8 and 103 +/- 4 mmHg during the first and second weeks after SAD (both P < 0.05) and then declined to levels not different from control during weeks 3-5. In the CBU group, MAP averaged 120 +/- 4 mmHg during the first week, declined to 111 +/- 4 mmHg during the second week, and stabilized at 104 mmHg during weeks 3-5 (all P < 0.05 compared with control). Plasma norepinephrine levels were increased significantly for the first week after SAD and for 2 wk after CBU but were not different from control for the remainder of the study. These results indicate that the initial increase in MAP after CBU is not sustained but declines to a level that is modestly higher than control. However, because MAP did not fall to control levels, the results are compatible with the hypothesis that baroreceptor input can influence the long-term level of MAP.  相似文献   

19.
The present study examined the effects of ANG II on the renal synthesis of 20-hydroxyeicosatetraenoic acid (20-HETE) and its contribution to the renal vasoconstrictor and the acute and chronic pressor effects of ANG II in rats. ANG II (10(-11) to 10(-7) mol/l) reduced the diameter of renal interlobular arteries treated with inhibitors of nitric oxide synthase and cyclooxygenase, lipoxygenase, and epoxygenase by 81 +/- 8%. Subsequent blockade of the synthesis of 20-HETE with 17-octadecynoic acid (1 micromol/l) increased the ED(50) for ANG II-induced constriction by a factor of 15 and diminished the maximal response by 61%. Graded intravenous infusion of ANG II (5-200 ng/min) dose dependently increased mean arterial pressure (MAP) in thiobutylbarbitol-anesthetized rats by 35 mmHg. Acute blockade of the formation of 20-HETE with dibromododecenyl methylsulfimide (DDMS; 10 mg/kg) attenuated the pressor response to ANG II by 40%. An intravenous infusion of ANG II (50 ng. kg(-1). min(-1)) in rats for 5 days increased the formation of 20-HETE and epoxyeicosatrienoic acids (EETs) in renal cortical microsomes by 60 and 400%, respectively, and increased MAP by 78 mmHg. Chronic blockade of the synthesis of 20-HETE with intravenous infusion of DDMS (1 mg. kg(-1). h(-1)) or EETs and 20-HETE with 1-aminobenzotriazole (ABT; 2.2 mg. kg(-1). h(-1)) attenuated the ANG II-induced rise in MAP by 40%. Control urinary excretion of 20-HETE averaged 350 +/- 23 ng/day and increased to 1,020 +/- 105 ng/day in rats infused with ANG II (50 ng. kg(-1). min(-1)) for 5 days. In contrast, urinary excretion of 20-HETE only rose to 400 +/- 40 and 600 +/- 25 ng/day in rats chronically treated with ANG II and ABT or DDMS respectively. These results suggest that acute and chronic elevations in circulating ANG II levels increase the formation of 20-HETE in the kidney and peripheral vasculature and that 20-HETE contributes to the acute and chronic pressor effects of ANG II.  相似文献   

20.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号