首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we discuss the effects of yearly temperature variation on the development and seasonal occurrence of poikiliothermic organisms with multiple life stages. The study of voltinism in the mountain pine beetle (Dendroctonus ponderosae Hopkins), an important forest insect living in extreme temperature environments and exhibiting no diapause, provides a motivational example. Using a minimal model for the rates of aging it is shown that seasonal temperature variation and minimal stage-specific differences in rates of aging are sufficient to create stable uni-and multi-voltine oviposition cycles. In fact, these cycles are attracting and therefore provide an exogenous mechanism for synchronizing whole populations of organisms. Structural stability arguments are used to extend the results to more general life systems.  相似文献   

2.
Explanation of the characteristics of the early developmental stage of organisms is an important problem in evolutionary biology. In studies to date, evolutionary biologists have proposed some theories that successfully explain egg size variation. Mesoscale water movements may transport early life stage organisms in the aquatic biosphere. We propose a novel biological view to explain the duration of the retention period at the spawning ground and egg size variations in aquatic organisms with a planktonic stage at least during the early part of their life history. We develop a life history model of the early life stage of such aquatic organisms that takes into account their adaptations to water currents and biotic environmental gradients in the currents. We hypothesize that the distance from the spawning grounds to the nursery grounds and the biological richness of the currents affect the adaptive life history design of these aquatic organisms, including adaptive retention time at the spawning ground and egg size. Various studies of fish biology describe in passing phenomena that suggest the validity of our deductions, but explicit empirical attempts to evaluate our predictions in the field of evolutional biology are needed.  相似文献   

3.
Timing of reproduction influences future prospects of offspring and therefore the reproductive value of parents. Early offspring are often more valuable than later ones when food availability and predation risk fluctuate seasonally. Marine zooplankton have evolved a diversity of life history strategies in response to seasonality. We present a state-dependent life history model for the annual and herbivorous high-latitude copepod Calanoides acutus . Individuals are characterised by four states; developmental stage, structural size, energy reserves and vertical location. There are two habitats, a surface habitat with seasonal predation risk and food availability, and a safer deep habitat with no food and low metabolism (diapause). Optimal life histories (diapause and energy allocation strategies) are found by dynamic programming. Seasonal egg fitness (reproductive value) emerges from the model and peak values are typically before the feeding season. Disentangling the fitness components, we conclude that seasonality in egg fitness is caused both by environmental seasonality in food and predation risk and by time-constraints on development and diapause preparation. Realised egg production, as predicted from population simulations, does not match the seasonal peak in offspring fitness but is delayed relative to peak egg fitness. We term this an 'internal life history mismatch' as constraints and tradeoffs cause sub-optimal birth dates for most eggs whereas mothers maximise their reproductive value by high number of eggs rather than few and optimally timed eggs. The earliest eggs have a disproportionately high contribution to population recruitment, emphasising the importance of early eggs and the need to understand seasonal patterns in offspring fitness.  相似文献   

4.
5.
1. Insect oviposition behaviour is ecologically and physiologically plastic. For tephritid fruit flies, Bactrocera dorsalis Hendel, host availability varies spatially and temporally. Females are expected to adopt adaptive oviposition strategies to maximise lifetime reproductive fitness, including survival. Bactrocera dorsalis oviposition tactics in response to different host availabilities were investigated. 2. This study includes three treatments: (i) variable host densities (host density varied according to a fixed cycle from day to day over values of 1, 5, 10 and 20 hosts per cage), (ii) a fixed high host density (20 hosts per cage), and (iii) a fixed low host density (1 host per cage). 3. Daily egg‐laying number per female over the course of 27 days was entirely independent of host density and highly dependent on female age. As host availability increased, females accepted significantly more hosts, generally laid small egg clutches, and more broadly distributed the eggs. 4. Tephritid fruit flies adaptively adjusted egg clutches in ways that reflected the variability of host availability. Egg‐ and time‐limitation constraints appeared to drive these adjustments. Female egg maturation was triggered by oviposition activity and reflected marked lifetime trade‐offs. Such strategies involved specific time schedules for egg laying. 5.This study defined the oviposition plasticity of the tephritid fruit fly. These results have general implications for the behavioural ecology of insect herbivores and parasitoids.  相似文献   

6.
Maternal effects can mold progeny phenotypes in various ways and may constitute ecological adaptations. By examining the effect of oviposition sequence on progeny produced by different size classes of female ladybird beetles (produced by controlling larval access to food), we show that maternal signals can change through adult life and alter the developmental programs of progeny, ostensibly to synchronize their life histories with predictable resource dynamics, thus maximizing maternal fitness. We also show that female body size, as determined by larval food supply, interacts with female age to influence progeny fitness. When fed ad libitum as adults, small females reared with limited food access laid fewer, smaller eggs than large females reared with ad libitum food access. Maternal body size interacted with oviposition sequence to influence progeny development, but the latter had greater impact. Eggs laid later by medium and large females hatched faster than those laid earlier, larvae fed longer in the fourth instar, their pupation period was shorter, total developmental time was reduced, and adults emerged with greater mass, most notably daughters. Oviposition sequence effects on progeny from small mothers were non‐significant for total developmental time and progeny mass. Only large mothers increased egg size over time and egg mass was not consistently correlated with developmental parameters, indicating that progeny phenotype was impacted by other, more cryptic, maternal signals. Such signals appear costly, as food limitation during development constrained not only fecundity and egg size but also maternal ability to manipulate progeny phenotype. The production of faster‐developing offspring that mature to larger sizes late in the oviposition cycle may be adaptive for exploitation of ephemeral aphid outbreaks with predictable dynamics of prey abundance and competition.  相似文献   

7.
We use a full factorial design to investigate the effects of maternal and paternal developmental temperature, as well as female oviposition temperature, on egg size in the butterfly Bicyclus anynana. Butterflies were raised at two different temperatures and mated in four possible sex-by-parental-temperature crosses. The mated females were randomly divided between high and low oviposition temperatures. On the first day after assigning the females to different temperatures, only female developmental temperature affected egg size. Females reared at the lower temperature laid larger eggs than those reared at a higher temperature. When eggs were measured again after an acclimation period of 10 days, egg size was principally determined by the prevailing temperature during oviposition, with females ovipositing at a lower temperature laying larger eggs. In contrast to widely used assumptions, the effects of developmental temperature were largely reversible. Male developmental temperature did not affect egg size in either of the measurements. Overall, developmental plasticity and acclimation in the adult stage resulted in very similar patterns of egg size plasticity. Consequently, we argue that the most important question when testing the significance of acclamatory changes is not at which stage a given plasticity is induced, but rather whether plastic responses to environmental change are adaptive or merely physiological constraints.  相似文献   

8.
Encalada AC  Peckarsky BL 《Oecologia》2006,148(3):526-537
Selective oviposition can have important consequences for recruitment limitation and population dynamics of organisms with complex life cycles. Temporal and spatial variation in oviposition may be driven by environmental or behavioral constraints. The goals of this study were to: (1) develop an empirical model of the substrate characteristics that best explain observed patterns of oviposition by Baetis bicaudatus (Ephemeroptera), whose females lay eggs under rocks protruding from high-elevation streams in western Colorado; and (2) test experimentally selective oviposition of mayfly females. We surveyed the number and physical characteristics of potential oviposition sites, and counted the number and density of egg masses in different streams of one watershed throughout two consecutive flight seasons. Results of surveys showed that variability in the proportion of protruding rocks with egg masses and the density of egg masses per rock were explained primarily by seasonal and annual variation in hydrology, and variation in geomorphology among streams. Moreover, surveys and experiments showed that females preferred to oviposit under relatively large rocks located in places with high splash associated with fast current, which may provide visual, mechanical or both cues to females. Experiments also showed that high densities of egg masses under certain rocks were caused by rock characteristics rather than behavioral aggregation of ovipositing females. While aggregations of egg masses provided no survival advantage, rocks selected by females had lower probabilities of desiccating during egg incubation. Our data suggest that even when protruding rocks are abundant, not all rocks are used as oviposition sites by females, due to female selectivity and to differences in rock availability within seasons, years, or streams depending on variation in climate and hydrogeomorphology. Therefore, specialized oviposition behavior combined with variation in availability of quality oviposition substrata has the potential to limit recruitment of this species.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

9.
1. Various physical variables were measured at rocks potentially used by lotic macroinvertebrates as oviposition sites at multiple locations on two occasions along the Acheron and Little Rivers, south‐eastern Australia. The associations between these parameters and the presence/absence and abundance of aquatic insect egg masses were explored as well as the small‐scale distribution of egg masses on individual rocks. 2. Physical features that characterise oviposition sites of 17 different aquatic taxa are presented. No obvious differences in patterns of oviposition site selectivity were apparent between multiple sampling times or locations. For some common taxa, multivariate analyses revealed that measurements of rock size and local current speed were positively related to the likelihood of an egg mass being present. However there were no consistent relationships between the abundance of egg masses and either of these variables. 3. The small‐scale distribution of egg masses on individual rocks revealed patterns in relation to surfaces that clearly differed as oviposition habitat, such as the underside, upstream and downstream surfaces. Presumably, these patterns are the result of small‐scale variation in flow conditions that characterise these particular rock surfaces. 4. The results of this study indicate that the oviposition strategies of a number of aquatic taxa may be reasonably predictable based on measurable physical parameters. These findings have important implications for future studies wanting to incorporate the adult and egg life history stages of lotic insects into studies of population dynamics.  相似文献   

10.
植食性昆虫对寄主植物的选择适应性是研究昆虫和植物协同进化关系的核心内容之一。评估寄主植物对植食性昆虫种群的适合度,需要综合分析昆虫对寄主的产卵选择性和寄主对昆虫的取食适合性。以桔小实蝇和番石榴实蝇为研究对象,分别测定了这两种实蝇对6种寄主果实:番石榴、香蕉、杨桃、木瓜、甜橙、番茄的产卵选择性以及幼虫取食后对其生长发育的影响。寄主产卵选择性实验分别采用完整寄主果实直接供试产卵和块状寄主果实气味引诱产卵两种处理方式;在生长发育适应性实验中,以幼虫和蛹的存活和生长发育等相关参数作为评价指标。实验结果表明,寄主的供试方式不同,两种实蝇的选择性均有明显差异;对寄主气味选择性强的寄主更适合于两种实蝇后代的生长发育。两种实蝇对6种寄主果实的产卵选择性和后代发育适合性两者相关性不显著,与许多文献报道单一地采用发育适合性(如发育历期、存活率或蛹重等)作为评价寄主选择性的结果不一致。两种实蝇之间对6种寄主果实的产卵选择和幼虫取食适合性既具相似性也具差异性,表明这两种实蝇在寄主生态位上既有重叠性又有分化性。  相似文献   

11.
Klaus  Sternberg 《Journal of Zoology》1995,235(1):163-174
In two bog-dwelling dragonflies, Somatochlora alpestris and S. arctica , the influence of oviposition date and temperature upon duration of embryonic development was studied. Egg diapause was facultative. With advancing season, the proportion of diapause eggs increases from 0 to 37% in S. alpestris and from 0 to 18% in S. arctica. Eggs needed at least 17 to 38 days for development. Hatching curves were temperature-independent in nearly all experiments but developmental rate increased at higher ambient temperature. In S. arctica , responses of developmental rate to temperature differed in eggs laid on different dates. In S. alpestris , duration of egg development decreased as season progressed. The duration of egg development of non-diapause eggs and proportion of diapause eggs in S. alpestris and possibly in S. arctica may also both be a function of female age at the time of oviposition. The ecological significance of the different development patterns is discussed.  相似文献   

12.
Accurate models of temperature-dependent embryonic developmental rates are important to assess the effects of a changing climate on insect life cycles and to suggest methods of population management by habitat manipulation. Embryonic development determines the life cycle of many species of grasshoppers, which, in cold climates, spend two winters in the egg stage. Increasing temperatures associated with climate change in the subarctic could potentiate a switch to a univoltine life cycle. However, egg hatch could be delayed by maintaining a closed vegetative canopy, which would lower soil temperatures by shading the soil surface. Prediapause and postdiapause embryonic developmental rates were measured in the laboratory over a wide range of temperatures for Melanoplus borealis Fieber and Melanoplus sanguinipes F. (Orthoptera: Acrididae) A model was fit to the data and used to predict dates of egg hatch in the spring and prediapause development in the fall under different temperature regimens. Actual soil temperatures were recorded at several locations over 5 yr. To simulate climate warming, 2, 3, or 4°C was added to each hourly recorded temperature. Results suggest that a 2, 3, or 4°C increase in soil temperatures will result in eggs hatching ≈ 3, 5, or 7 d earlier, respectively. An increase of 3°C would be required to advance prediapause development enough to allow for a portion of the population to be univoltine in warmer years. To simulate shading, 2 and 4°C were subtracted from observed temperatures. A 4°C decrease in temperatures could potentially delay hatch by 8 d.  相似文献   

13.
Abstract.  1. Some organisms respond adaptively to seasonal time constraints by altering development time to life-history transitions (e.g. metamorphosis, oviposition). Such life-history changes may have costs (e.g. reduced fecundity, mass, offspring quality).
2. The hypothesis that a northern population of the grasshopper Romalea microptera (Beauvois) would show adaptive plasticity in oviposition timing in response to seasonal time constraints was tested by manipulating photoperiod to simulate the middle of the active season (Long photoperiod), the end of the active season (Short photoperiod), and seasonal change (photoperiod Declining from long to short). Females received either high or low food rations. Short or Declining photoperiod were predicted to induce early oviposition with costs of reduced egg number, post-oviposition mass, or egg size, particularly in low-food females.
3. Effects of food ration and photoperiod, but not interaction, were significant in failure time analysis of age at oviposition. mancova on age at oviposition, egg number, and post-oviposition mass yielded similar effects. The multivariate effect of photoperiod resulted primarily from reduced time to oviposition in Short or Declining photoperiod. No costs in egg number or post-oviposition mass were associated with this photoperiod-induced reduction in time to oviposition. The multivariate effect of food ration resulted mainly from lower egg number with low food. Food ration affected egg size, but photoperiod and interaction did not. In all cases, Short and Declining photoperiod produced similar effects.
4. In its northern range, R. microptera accelerates reproduction in response to seasonal constraints, a response that may be adaptive. How R. microptera avoids costs associated with this reduced pre-oviposition period remains unknown.  相似文献   

14.
R. E. Jones 《Oecologia》1987,72(1):69-76
Summary Australian and U.K. Pieris rapae differ markedly in their oviposition behaviour; U.K. females produce a more aggregated egg distribution, and lay their eggs more quickly, than do Australian females. The adaptive reason for this divergence probably lies in the relative costs of increased flight time (more costly in the U.K.) and increased local crowding (more costly in Australia). There is also a strong relationship between juvenile developmental rate (at constant temperature) and oviposition behaviour, but the form of this relationship differed between the two populations. The adaptive reasons for the link between developmental rate and behaviour is not clear. It may be that this link represents the tip of the iceberg; i.e. that physiological, developmental, and behabioral characters all co-vary in ways and for reasons that we do not yet understand.  相似文献   

15.
We explored the adaptive significance of developmental plasticity in the tropical butterfly Bicyclus anynana using two experiments including temperature changes during ontogeny. In contrast to previous findings on adult acclimation, we could not find any evidence in support of adaptive developmental plasticity, as survival until adulthood was not enhanced when larval rearing temperatures matched the temperatures experienced during prepupal or pupal development. Extreme temperatures substantially reduced survival, supporting the ‘optimal developmental temperature’ hypothesis. Metamorphosis was more efficient at the higher rearing temperature of 27 °C, where egg hatching success was also higher, indicating that the lower temperature of 20 °C is already slightly stressful for this tropical butterfly.  相似文献   

16.
To prevent predation on their eggs, prey often avoid patches occupied by predators. As a result, they need to delay oviposition until they reach predator-free patches. Because many species allocate energy to egg production in a continuous fashion, it is not clear what kind of mechanism prey use to delay oviposition. We used females of the phytoseiid mite Neoseiulus cucumeris to study these mechanisms. Females were placed in patches with pollen, a food source they use for egg production, and they were exposed to another phytoseiid mite, Iphiseius degenerans, which is an intraguild predator of N. cucumeris juveniles. We found that the oviposition of N. cucumeris females on patches with the predator was lower than on patches without the predator. Cues left by the intraguild predator were not sufficient to elicit such behaviour. Females of N. cucumeris reduced oviposition when exposed to the predator by retaining the egg inside their body, resulting in a lower developmental rate once these eggs were laid. Hence, females are capable of retaining eggs, but the development of these eggs continues inside the mother’s body. In this way, females gain some time to search for less risky oviposition sites.  相似文献   

17.
Oviposition Site Choice and Life History Evolution   总被引:7,自引:0,他引:7  
SYNOPSIS. Studies of life history evolution, as well as muchof life history theory, have typically focused on "hard" componentsof life histories; phenotypic characteristics that can be readilyobserved, quantified, and ultimately, connected rather directlyto fitness. Typical of these are propagule size, propagule number,and age and size at maturity. What is largely missing from thestudy of life history evolution is consideration of the roleof behavior, principally female oviposition site choice, inthe evolution of life histories. For oviparous organisms, naturalselection cannot produce locally optimized "hard" componentsof life history phenotypes without a consistent environmentalcontext (whether invariant orvariable); in a variable environment,that consistent environmental context can be most effectivelyprovided by interactive oviposition site choice. I present amodel of selection on oviposition site choice in the contextof the evolution of "hard" components of life history phenotypes,along with some experimental data illustrating oviposition sitechoice in response to predators. The model and data are thenrelated to the overall question of the role of oviposition sitechoice in life history evolution. The conclusion is that ovipositionsite choice must be under equally strong selection with eggsize, egg number and the other hard components of life historiesin order to generate and optimize locally adapted or ecologicallyspecialized life history phenotypes, and must therefore, playa significant role in the evolution of life histories.  相似文献   

18.
Species with complex life cycles pose challenges for understanding what processes regulate population densities, especially if some life stages disperse. Most studies of such animals that are thought to be recruitment limited focus on the idea that juvenile mortality limits the density of recruits (and hence population density), fewer consider the possibility that egg supply may be important. For species that oviposit on specific substrata, environmental constraints on oviposition sites may limit egg supply. Female mayflies in the genus Baetis lay egg masses on the underside of stream rocks that emerge above the water’s surface. We tested the hypothesis that egg mass densities are constrained by emergent rock densities within and between streams, by counting egg masses on emergent rocks. All emergent rocks were counted along 1-km lengths of four streams, revealing significant variation in emergent rock density within streams and a more than three-fold difference between streams. In each stream, egg mass density increased with the density of emergent rocks in 30-m stretches. We used regression equations describing these small-scale relationships, coupled with the large-scale spatial variation of emergent rocks, to estimate egg mass densities for each 1-km stream length, a scale relevant to population processes. Scaled estimates were positively associated with emergent rock density and provided better estimates than methods that ignored environmental variation. Egg mass crowding was inversely related to emergent rock density at the stream scale, a pattern consistent with the idea that oviposition substrata were in short supply in streams with few emergent rocks, but crowding did not compensate entirely for differences in emergent rock densities. The notion that egg supply, not larval mortality, may limit population density is an unusual perspective for stream insects. Environmental constraints on egg supply may be widespread among other species with specialised oviposition behaviours.  相似文献   

19.
SYNOPSIS. This study compares the relationships among earlydevelopment and life history characters between two monophyleticgroups, salamanders and teleost fishes. Plethodontid salamandershave large eggs and slow development. Large egg size in plethodontidsalamanders has been shown to influence several aspects of earlydevelopment, including: (1) time of holoblastic cleavage, (2)thickness of the blastocoel roof, (3) gastrulation (morphogeneticprocesses and timing), (4) early developmental rate, (5) formationof an embryonic disk, and (6) percentage of egg volume contributingto embryonic structures. Egg size is just one of several factorsthat influence the rate of development. While the slow developmentof plethodontids may have evolutionary implications for timingof oviposition, the lack of a clear correlation between thesevariables indicates that other life history characters needto be studied. Comparisons of the timing of oviposition in 28plethodontid species reveal that oviposition in the fall orwinter is the derived condition. On the basis of six early developmentaland six life history characters examined, there do not appearto be strong relationships between these two character sets.Evolutionary increases in egg size that delay when the egg cleavesholoblastically in some amphibian lineages (such as plethodontids)have been considered to be analogous to the changes that ledto the evolution of meroblastic cleavage in such lineages asamniotes. However, teleosts provide an interesting contrastto this standard scenario: The evolution of meroblastic cleavageis not correlated with an increase in egg size, but rather,with a decrease in egg size. Changes in early development ofteleosts that led to the evolution of meroblastic cleavage mayhave significant relationships with life history traits becauseof osmotic influences and could qualify as a key innovation.  相似文献   

20.
Damaging effects of UVB in conjunction with other stressors associated with global change are well‐established, with many studies focused on vulnerable early life stages and immediate effects (e.g., mortality, developmental abnormalities). However, for organisms with complex life cycles, experiences at one life stage can have carry‐over effects on later life stages, such that sublethal effects may mediate later vulnerability to further stress. Here, we exposed embryos in benthic egg masses of the New Zealand intertidal gastropod Siphonaria australis to treatments of either periodic stress (e.g., elevated UVB, salinity, and water temperature mimicking tidepool conditions in which egg masses are commonly found during summer) or control conditions (low UVB, ambient salinity, and water temperatures). Although there was high mortality from stressed egg masses, 24% of larvae hatched successfully. We then exposed the hatching larvae from both egg mass treatments to different combinations of water temperature (15 or 20 °C) and light (high UVB or shade) 12 h per day for 10 days. The most stressful larval conditions of 20 °C/high UVB resulted in low survival and stunted growth. Carry‐over effects on survival were apparent for shaded larvae exposed to elevated temperature, where those from stressed egg masses had 1.8× higher mortality than those from control egg masses. Shaded larvae were also larger and had longer velar cilia if they were from control egg masses, independent of larval temperature. These results demonstrate that previous experience of environmental stress can influence vulnerability of later life stages to further stress, and that focus on a single life stage will underestimate cumulative effects of agents of global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号