首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
The contribution of calmodulin and protein kinases A or C to the activation of membrane Ca-ATPase was studied on saponin-permeabilized rat erythrocytes. In the presence of all endogenous regulators, the dependence of the Ca-ATPase activity of Ca2+ concentration was described by a bell-shaped curve with a maximum at 2-5 microM Ca2+; K0.5 = 0.43 microM Ca2+. Washing of erythrocyte membranes with 5-10 microM Ca2+ maintained up to 75% of the ATPase activity, while washing with EGTA (2 mM) decreased the activity, on the average, 5-fold, and increased K0.5 up to 0.54-0.6 microM Ca2+. An addition of an EGTA extract to washed membranes restored up to 75% of the original ATPase activity, while calmodulin restored about 40% of the original Ca-ATPase activity and decreased K0.5 to 0.23-0.3 microM Ca2+. The calmodulin inhibitor R24571 failed to alter the Ca-ATPase activity in permeabilized erythrocytes but slightly diminished it in reconstituted membranes. The protein kinase C inhibitors H7 and polymyxin increased the Ca-ATPase activity in permeabilized red cells and suppressed it in reconstituted membranes. The data obtained suggest that in native red cell membranes Ca-ATPase is activated by regulator(s) dependent on Ca2+ and protein kinase which are other than calmodulin.  相似文献   

2.
Hydrophobic regions function in calmodulin-enzyme(s) interactions   总被引:17,自引:0,他引:17  
Certain naturally occurring lipids (phosphatidylinositol, phosphatidylserine, arachidonic acid) and sodium dodecyl sulfate activate at least two calmodulin-dependent enzymes, bovine brain 3':5'-cyclic nucleotide phosphodiesterase and chicken gizzard myosin light chain kinase in the absence of Ca2+. 2-p-Toluidinyl-naphthalene-6-sulfonate (TNS), which is often used as a probe for hydrophobic groups of proteins, inhibits these two calmodulin-dependent enzymes. Kinetic analysis of inhibition of chicken gizzard myosin kinase by TNS revealed a competitive fashion against calmodulin-induced activation. The interaction between TNS and purified bovine brain calmodulin as demonstrated in the appearance of TNS fluorescence in the presence of 3 microM or more of calcium ion was not observed in the presence of 2 mM EGTA. This suggests that TNS is able to bind to calmodulin in the presence of Ca2+. Moreover, a calmodulin-interacting agent N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide suppressed the TNS fluorescence induced by complex formation with calmodulin in the presence of Ca2+. These results suggest that when Ca2+ binds to the high affinity sites of calmodulin, it induces a conformational change which exposes hydrophobic groups, and the calmodulin is then capable of activating calmodulin-dependent enzymes. We propose that hydrophobic properties of Ca2+-calmodulin are important for the activation of Ca2+-calmodulin-dependent enzymes.  相似文献   

3.
The release of the prostanoids prostaglandin D2 (PGD2), prostaglandin E2 (PGE2) and thromboxane induced by zymosan and phorbol ester in cultured rat Kupffer cells was found to depend on the extracellular concentration of Ca2+ to some extent. Prostanoid formation following the addition of the calcium ionophore A 23187 was totally inhibited when calcium ions were withdrawn from the medium whereas the prostanoid synthesis from added arachidonic acid was independent of Ca2+. A half-maximal rate of PGE2 release by cells treated with zymosan, phorbol ester or A23187 was obtained at 0.6-0.7 microM free extracellular Ca2+ and greater than or equal to 100 microM free Ca2+ was required to stimulate PGE2 formation maximally. The calmodulin antagonist R24571 partially inhibited the release of PGE2 elicited by zymosan and A23187 but not by phorbol ester or arachidonic acid. Verapamil and nifedipine, two calcium channel blockers, had no effect on the formation of PGE2 irrespective of the stimulus. TMB 8 [3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester] an intracellular calcium antagonist, inhibited the synthesis of PGE2 induced by zymosan and phorbol ester. The superoxide formation following the addition of zymosan and phorbol ester was not influenced by removal of calcium ions from the medium or by addition of the various calcium antagonists. The data presented here suggest that Ca2+-dependent reactions are involved in the synthesis of prostanoids induced by zymosan and phorbol ester and that both extracellular Ca2+ and mobilization of Ca2+ from intracellular stores are needed to induce maximally the production of prostanoids in cultured rat Kupffer cells.  相似文献   

4.
We tested the effects of calmodulin, two types of calmodulin antagonists, and various phospholipids on the phospholipase A2 activities of intact platelets, platelet membranes, and partially purified enzyme preparations. Trifluoperazine, chlorpromazine (phenothiazines) and N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7), at concentrations which antagonize the effects of calmodulin, significantly inhibited thrombin- and Ca2+ ionophore-induced production of arachidonic acid metabolites by suspensions of rabbit platelets and Ca2+-induced arachidonic acid release from phospholipids of membrane fractions, but not phospholipase A2 activity in purified enzyme preparations. The addition of acidic phospholipids, but not calmodulin, stimulated phospholipase A2 activity in purified enzyme preparations while decreasing its Km for Ca2+. The dose-response and kinetics of inhibition by calmodulin antagonists of acidic phospholipid-activated phospholipase A2 activity in purified preparations were similar to those of Ca2+-induced arachidonic acid release from membrane fractions. Calmodulin antagonists were also found to inhibit Ca2+ binding to acidic phospholipids in a similar dose-dependent manner. Our results suggest that the platelet phospholipase A2 is the key enzyme involved in arachidonic acid mobilization in platelets and is regulated by acidic phospholipids in a Ca2+-dependent manner and that calmodulin antagonists inhibit phospholipase A2 activity via an action on acidic phospholipids.  相似文献   

5.
B-16 melanoma cells in culture were prelabeled with (3H)-arachidonate, and exposed to UV radiation. Immediately after irradiation the cells released labeled materials. This UV-stimulated release was inhibited by mepacrine (20 microM) and calmodulin inhibitor W7 (0.5 microM). To determine the influence of extracellular Ca2+ on the UV-stimulated release, experiments were made with media containing various concentrations of Ca2+. The release decreased significantly at lower Ca2+ concentrations. These results suggest that Ca2+-calmodulin-dependent phospholipase A2 was involved in UV-stimulated release of radiolabeled materials, possibly arachidonic acid and its metabolites, from the cells.  相似文献   

6.
The mechanism by which serotonin (5-HT3) receptors mediate a rise in cyclic-GMP level was investigated in a neuronal cell line. Inhibitors of phospholipase A2 (mepacrine) and of lipoxygenase (eicosatetraynoic acid or nordihydroguaiaretic acid) suppressed the action of serotonin. On the other hand, inhibition by hemoglobin indicates a role for nitric oxide which could be in part responsible for the cyclic-GMP effect as an intercellular stimulant. The suppression of the serotonin effect by the arginine analogues N omega-methyl-L-arginine and canavanine is consistent with the notion that nitric oxide could be released from arginine. The serotonin-induced rise of cyclic-GMP level depends on the presence of extracellular Ca2+ with half-maximal stimulation at 0.3 mM Ca2+. The serotonin-stimulated rise of cyclic GMP was inhibited by (a) addition of inorganic blockers of Ca2(+)-permeable channels (La3+, half-maximal inhibitory concentration (IC50) 0.04 mM; Mn2+, IC50, 0.4 mM; Co2+, IC50, 0.9 mM; Ni2+, IC50, 1.2 mM) and (b) of organic blockers (diltiazem: IC50, 6 microM, methoxyverapamil: IC50, 3 microM and (c) intracellular application of the Ca2+ chelator bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (IC50, 2 microM). Thus, two pathways for the activation of soluble guanylate cyclase by serotonin are possible: (a) via lipoxygenase products of arachidonic acid and/or (b) via nitric oxide or a related nitroso compound. Serotonin mediates a rise of cytosolic Ca2+ activity due to entry of extracellular Ca2+. It still has to be investigated which step depends on a rise of cytosolic Ca2+ activity that appears to be a prerequisite for activation of guanylate cyclase.  相似文献   

7.
A Tripathy  L Xu  G Mann    G Meissner 《Biophysical journal》1995,69(1):106-119
The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channel's regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.  相似文献   

8.
Using a highly effective chelator of Ca2+ and 45Ca, the concentration of Cai2+ in human and rat erythrocytes was measured both at normal and accelerated Ca2+ influx into the cells. No effect of the calmodulin-dependent reaction inhibitor R24571 was observed. The Ca-ATPase from saponin-treated erythrocytes was characterized by a high affinity for Ca2+ (K 0.5-0.7 microM). This value is 2-3 times as low as that for Ca2+ concentration causing a 50% increase of the Ca-ATPase activity in erythrocyte ghosts obtained during hypoosmotic hemolysis. The Ca-ATPase activity in saponin-treated erythrocytes did not change either under the effect of calmodulin or by R24571. It was assumed that calmodulin did not participate in the regulation of the Ca2+-pump operation in erythrocytes in vivo.  相似文献   

9.
Prolactin and arachidonic acid increase milk casein secretion in mammary gland slices. These effects do not necessitate Ca2+ in the incubation medium. Prolactin does not modify the influx or the efflux of 45Ca2+. The Ca2+ channel blocking agent D600 (6 micrograms/ml) decreases the stimulatory effect of prolactin on casein secretion, but does not interfere in the stimulatory effect of arachidonic acid. The calmodulin inhibitor trifluoperazine (100 microM) inhibits stimulation of casein secretion by both prolactin and arachidonic acid. From these data, it is concluded that a flow of Ca2+ from the outside into the cell is not a requisite for the stimulation of casein secretion. However, stimulation by prolactin, but not stimulation by arachidonic acid, requires Ca2+ movement through calcium pathways. Intracellular transport of Ca2+ seems necessary for the stimulation of secretion.  相似文献   

10.
Most Ca2+-permeable ion channels are inhibited by increases in the intracellular Ca2+ concentration ([Ca2+]i), thus preventing potentially deleterious rises in [Ca2+]i. In this study, we demonstrate that currents through the osmo-, heat- and phorbol ester-sensitive, Ca2+-permeable nonselective cation channel TRPV4 are potentiated by intracellular Ca2+. Spontaneous TRPV4 currents and currents stimulated by hypotonic solutions or phorbol esters were reduced strongly at all potentials in the absence of extracellular Ca2+. The other permeant divalent cations Ba2+ and Sr2+ were less effective than Ca2+ in supporting channel activity. An intracellular site of Ca2+ action was supported by the parallel decrease in spontaneous currents and [Ca2+]i on removal of extracellular Ca2+ and the ability of Ca2+ release from intracellular stores to restore TRPV4 activity in the absence of extracellular Ca2+. During TRPV4 activation by hypotonic solutions or phorbol esters, Ca2+ entry through the channel increased the rate and extent of channel activation. Currents were also potentiated by ionomycin in the presence of extracellular Ca2+. Ca2+-dependent potentiation of TRPV4 was often followed by inhibition. By mutagenesis, we localized the structural determinant of Ca2+-dependent potentiation to an intracellular, C-terminal calmodulin binding domain. This domain binds calmodulin in a Ca2+-dependent manner. TRPV4 mutants that did not bind calmodulin lacked Ca2+-dependent potentiation. We conclude that TRPV4 activity is tightly controlled by intracellular Ca2+. Ca2+ entry increases both the rate and extent of channel activation by a calmodulin-dependent mechanism. Excessive increases in [Ca2+]i via TRPV4 are prevented by a Ca2+-dependent negative feedback mechanism.  相似文献   

11.
Jan CR  Tseng CJ  Chen WC 《Life sciences》2000,66(11):1053-1062
The effect of fendiline, a documented inhibitor of L-type Ca2+ channels and calmodulin, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca2+ probe. Fendiline at 5-100 microM significantly increased [Ca2+]i concentration-dependently. The [Ca2+]i rise consisted of an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM fendiline by reducing both the initial rise and the decay phase. This suggests that fendiline triggered external Ca2+ influx and internal Ca2+ release. In Ca(2+)-free medium, pretreatment with 50 microM fendiline nearly abolished the [Ca2+]i rise induced by 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, and vice versa, pretreatment with thapsigargin prevented fendiline from releasing internal Ca2+. This indicates that the internal Ca2+ source for fendiline overlaps with that for thapsigargin. At a concentration of 50 microM, fendiline caused Mn2+ quench of fura-2 fluorescence at the 360 nm excitation wavelenghth, which was inhibited by 0.1 mM La3+ by 50%, implying that fendiline-induced Ca2+ influx has two components separable by La3+. Consistently, 0.1 mM La3+ pretreatment suppressed fendiline-induced [Ca2+]i rise, and adding La3+ during the rising phase immediately inhibited the signal. Addition of 3 mM Ca2+ increased [Ca2+]i after preincubation with 50-100 microM fendiline in Ca(2+)-free medium. However, 50-100 microM fendiline inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 inhibited 50 microM fendiline-induced internal Ca2+ release by 48%, but inhibition of phospholipase C with 2 microM U73122 or inhibition of phospholipase D with 0.1 mM propranolol had no effect. Collectively, we have found that fendiline increased [Ca2+]i in MDCK cells by releasing internal Ca2+ in a manner independent of inositol-1,4,5-trisphosphate (IP3), followed by external Ca2+ influx.  相似文献   

12.
The aim of this study was to delineate the mode of action of 20-hydroxy-eicosatetraenoic acid (20-HETE) in airway smooth muscle (ASM) cells. ASM metabolizes arachidonic acid by various enzymatic pathways, including the cytochrome P-450 (CYP-450) omega-hydroxylase, which leads to the production of 20-HETE, a bronchoconstrictive eicosanoid. The present study demonstrated that 20-HETE induced concentration-dependent tonic responses in ASM, whereas transient responses were recorded in Ca2+-free solution, suggesting an intracellular Ca2+ release process. 20-HETE inotropic responses were abolished by 36 microM 2-aminoethoxydiphenyl borate or 1 microM thapsigargin but were insensitive to 10 microM ryanodine, indicating that inositol triphosphate receptors likely control the release of intracellular Ca2+. Sustained tension, which required Ca2+ entry, was partially blocked by 1 microM nifedipine (an L-type) and 100 microM Gd3+ (a nonselective cationic channel blocker). Moreover, in the absence of selective 20-HETE receptor antagonists, 20-HETE tonic responses were inhibited in a concentration-dependent manner (0.1-10 microM) by capsazepine, a well-characterized vanilloid receptor antagonist. Capsazepine was also observed to reverse cumulative responses to 20-HETE and capsaicin, a TRPV1 agonist. In addition, capsazepine pretreatment largely modified the sustained inotropic responses to 20-HETE, suggesting that 20-HETE cross-reacted with TRPV1 receptors with a low affinity (microM) or that its specific receptor was inhibited by the vanilloid antagonist. Data obtained using RHC-80267, ONO-RS-082, and eicosatetraynoic acid, respective inhibitors of diacylglycerol-lipase, phospholipase A2, and CYP-450 omega-hydroxylase, reveal that intracellular arachidonic acid production and its 20-HETE metabolite may be responsible for the activation of nonselective cationic channels and tonic responses.  相似文献   

13.
The role of external calcium in platelet-activating factor- and zymosan-stimulated arachidonic acid release from mouse macrophages was investigated. Deprivation of external Ca2+ led to strong inhibition of receptor-mediated arachidonic acid release, which was completely restored when Ca2+ was added to the incubation medium. When arachidonic acid release was examined in Ca(2+)-depleted cells, the response took place only in presence of external Ca2+. Verapamil, a voltage-dependent Ca2+ channel blocker, nearly abolished arachidonic acid release in response to both platelet-activating factor and zymosan. These results suggest that extracellular Ca2+ influx is functionally linked to arachidonic acid release and hence to phospholipase A2 activation in mouse peritoneal macrophages.  相似文献   

14.
The Ca2+-dependent regulation of human platelet membrane adenylate cyclase has been studied. This enzyme exhibited a biphasic response to Ca2+ within a narrow range of Ca2+ concentrations (0.1-1.0 microM). At low Ca2+ (0.08-0.3 microM) adenylate cyclase was stimulated (Ka = 0.10 microM), whereas at higher Ca2+ (greater than 0.3 microM) the enzyme was inhibited to 70-80% control (Ki = 0.8 microM). Membrane fractions, prepared by washing in the presence of LaCl3 to remove endogenous calmodulin (approximately equal to 70-80% depletion), exhibited no stimulation of adenylate cyclase by Ca2+ but did show the inhibitory phase (Ki = 0.4 microM). The activation phase could be restored to La3+-washed membranes by addition of calmodulin (Ka = 3.0 nM). Under these conditions it was apparent that calmodulin reduced the sensitivity of adenylate cyclase to Ca2+ (Ki = 0.8 microM). Prostaglandin E1 (PGE1) did not alter Ki or Ka values for Ca2+. Calmodulin did not alter the EC50 for PGE1 stimulation of adenylate cyclase but increased the Vmax (1.5-fold). The calmodulin antagonist trifluoperazine potently inhibited adenylate cyclase in native membranes (80%) and to a much lesser extent in La3+-washed membranes (15%). This inhibition was due to interaction of trifluoperazine with endogenous calmodulin since trifluoperazine competitively antagonized the stimulatory effect of calmodulin on adenylate cyclase in La3+-washed membranes. We propose that biphasic Ca2+ regulation of platelet adenylate cyclase functions to both dampen (low Ca2+) and facilitate (high Ca2+) the haemostatic function of platelets.  相似文献   

15.
The present study examined (a) the source of arachidonic acid for Ca2+-stimulated renal inner medullary prostaglandin synthesis, (b) the Ca2+-dependence of enzymes of the phospholipase A2 and C pathways, and (c) the role of calmodulin in these Ca2+ actions. Ca2+ plus the ionophore A23187 stimulated (2-4-fold) release of labeled arachidonate, diglyceride, prostaglandin E2 or F2 alpha from inner medullary slices with a concomitant fall in labeled phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide hydrochloride (W-7) (10-100 microM) abolished or suppressed Ca++-stimulated immunoreactive prostaglandin E, labeled arachidonate and prostaglandin release, and the fall in labeled phospholipids but did not suppress labeled diglyceride or inositol accumulation. Studies in subcellular fractions demonstrated a particulate phospholipase A2 activity and a phosphatidylinositol-specific phospholipase C activity which was predominantly soluble (80%). W-7 or trifluoperazine (25 microM) abolished Ca2+-stimulated phospholipase A2 activity and particulate phospholipase C activity but were without effect on soluble phospholipase C. W-7 (100 microM) was without effect on Ca2+-stimulated diglyceride lipase and phosphatidic acid-specific phospholipase A2 activities. Hypertonic urea at concentrations that pertain in the inner medulla of hydropenic rats in vivo inhibited Ca2+-induced increases in labeled arachidonate release and immunoreactive prostaglandin E in slice incubates and Ca2+-responsive phospholipase C and A2. The results are consistent with the involvement of phospholipase A2, C, or both in the Ca2+ (+A23187)-stimulated release of free arachidonate for prostaglandin synthesis and support a role for calmodulin in Ca2+ activation of phospholipase A2 and particulate phospholipase C.  相似文献   

16.
A rise in intracellular Ca2+(Ca2+in) concentration from 1 to 100 microM is accompanied by a 100-fold increase of erythrocyte membrane permeability for k+ (opening of k+-channels) as well as by membrane hyperpolarization. Both effects are partly inhibited by trifluoroperazine and completely by calmidozolium (R24571). The Ca2+-dependencies of erythrocyte permeability for K+ and of Ca2+ binding to calmodulin are in good correlation. Within the same range of Ca2+in concentrations, i.e. 1-100 microM the activity of Na+-pump decreases by 90% despite the presence of trifluoroperazine and R24571. The permeability of erythrocytes for o-phosphate anions diminishes 15-fold after addition of the anionic exchanger SITS inhibitor. The SITS-inhibited component decreases 9-10 times with a rise in Ca2+in from 10 and 100 microM. In the presence of trifluoroperazine and R24571 the sensitivity of the anionic exchanger towards Ca2+ shows a 2-3 increase. The increase in Ca2+in up to 100 microM is concomitant with the activation of 32Pi incorporation into band 4.1 protein. The effect of Ca2+in on the phosphorylation of this protein is inhibited by calmodulin inhibitors. Addition of protein kinase C activator (4 beta-phorbol-12 beta-myristate-13-acetate) also leads to the increased incorporation of 32P into band 4.1 protein, whereas protein kinase A activator (dibutyryl-cAMP) causes 32P incorporation into bands 4.1 and 5 proteins. No effect of protein kinase activators on the activity of Na+-pump as well as on the permeability of erythrocyte membranes for K+ and anions was revealed. The data obtained point to the differences in the mechanisms of Ca2+in involvement in the regulation of the above ion transport systems. Presumably, none of the mechanisms is coupled with modification of the level of cytoskeleton protein phosphorylation. The effect of Ca2+ is mediated by the Ca2+ interaction with calmodulin only in the case of K+-channels.  相似文献   

17.
Human fibroblasts in culture will grow in serum-free medium containing serum replacement factors, but without protein growth factors, as long as the Ca2+ level is 1.0-2.0 mM. When the Ca2+ is reduced to 0.1 mM, the cells stop cycling, but they can be reinduced to cycle by raising the Ca2+ level to 1.0 mM Ca2+ or to higher concentrations that result in activation of mitogen-activated protein kinase (MAPK). We now report that exposure of human fibroblasts to extracellular Ca2+ increased the level of inositol (1,4,5)-trisphosphate in the cytoplasm and caused a transient rise in the concentration of intracellular free Ca2+. Ca2+-induced MAPK activation was partly abolished by treatment of the cells with pertussis toxin. It was also decreased by treatment of cells with thapsigargin, which depletes intracellular Ca2+ stores; with phorbol 12-myristyl 13-acetate (PMA), which down-regulates protein kinase C (PKC); with the calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide HCl (W-7), and calmidazolium (24571); as well as with lanthanum, a Ca2+ channel inhibitor. Ca2+ stimulation did not result in phosphorylation of the c-raf-1 protein. Our results suggest that extracellular Ca2+ stimulates MAPK activation through a pathway(s) involving a pertussis toxin-sensitive G protein, phospholipase C, intracellular free Ca2+, calmodulin, and PKC.  相似文献   

18.
Cooperativity among calmodulin's drug binding sites   总被引:2,自引:0,他引:2  
J S Mills  B L Bailey  J D Johnson 《Biochemistry》1985,24(18):4897-4902
The binding of felodipine, a dihydropyridine Ca2+ antagonist, to calmodulin has been studied by equilibrium dialysis and fluorescence techniques. Analysis using the Hill equation gives a Hill coefficient of 2. A plot of bound [felodipine] vs. free [felodipine]2 gives a Bmax of 1.9 mol/mol and a K0.5 of 22 microM. Two calmodulin antagonists, prenylamine and R24571, which have previously been shown to potentiate the fluorescent enhancement observed when felodipine binds to calmodulin [Johnson, J. D. (1983) Biochem. Biophys. Res. Commun. 112, 787], produce a reduction in Hill coefficient to 0.7 and 1.0, respectively, and account for the observed potentiation of felodipine binding. Titrations of felodipine with calmodulin in the absence and presence of prenylamine and R24571 suggest that these drugs decrease the K0.5 of calmodulin for felodipine by 25-fold. Thus, potentiating drugs (prenylamine and R24571) bind to either of the two felodipine binding sites and, through an allosteric mechanism, result in felodipine binding to the remaining site with greatly enhanced affinity. Two types of potentiating drugs are observed. Prenylamine exhibits a Hill coefficient of 0.8 whereas felodipine, R24571, and diltiazem exhibit Hill coefficients of 2 in their potentiation of felodipine binding. Titrations of felodipine and calmodulin with Ca2+ exhibit cooperativity with a Hill coefficient of 4. Half-maximal binding occurs near pCa 6.0. In the presence of R24571, the calcium dependence of felodipine binding is biphasic, now exhibiting a much higher affinity (pCa 7.6) component. A model is presented to explain the relationship of these various allosterically regulated conformers of calmodulin and their interactions and activation with its target proteins.  相似文献   

19.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

20.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号