首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic modification of human embryonic stem cells (hESCs) using biophysical DNA transfection methods are hampered by the very low single cell survival rate and cloning efficiency of hESCs. Lentiviral gene transfer strategies are widely used to genetically modify hESCs but limited transduction efficiencies in the presence of feeder or stroma cells present problems, particularly if vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped viral particles are applied. Here, we investigated whether the recently described semen derived enhancer of virus infection (SEVI) and alternative viral envelope proteins derived from either Gibbon ape leukaemia virus (GALV) or feline leukaemia virus (RD114) are applicable for transducing hESCs during co-culture with feeder or stroma cells. Our first set of experiments demonstrates that SEVI has no toxic effect on murine or hESCs and that exposure to SEVI does not interfere with the pluripotency-associated phenotype. Focusing on hESCs, we were able to further demonstrate that SEVI increases the transduction efficiencies of GALV and RD114 pseudotyped lentiviral vectors. More importantly, aiming at targeted differentiation of hESCs into functional somatic cell types, GALV pseudotyped lentiviral particles could efficiently and exclusively transduce hESCs grown in co-culture with OP9-GFP stroma cells (which were often used to induce differentiation into haematopoietic derivatives).  相似文献   

2.
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.  相似文献   

3.
Oncoretrovirus vectors pseudotyped with the feline endogenous retrovirus (RD114) envelope protein produced by the FLYRD18 packaging cell line have previously been shown to transduce human hematopoietic progenitor cells with a greater efficiency than similar amphotropic envelope-pseudotyped vectors. In this report, we describe the production and efficient concentration of RD114-pseudotyped murine leukemia virus (MLV)-based vectors. Following a single round of centrifugation, vector supernatants were concentrated approximately 200-fold with a 50 to 70% yield. Concentrated vector stocks transduced prestimulated human CD34(+) (hCD34(+)) cells with approximately 69% efficiency (n = 7, standard deviation = 4.4%) using a single addition of vector at a low multiplicity of infection (MOI = 5). Introduction of transduced hCD34(+) cells into irradiated NOD/SCID recipients resulted in multilineage engraftment with long-term transgene expression. These data demonstrate that RD114-pseudotyped MLV-based vectors can be efficiently concentrated to high titers and that hCD34(+) cells transduced with concentrated vector stocks retain in vivo repopulating potential. These results highlight the potential of RD114-pseudotyped oncoretrovirus vectors for future clinical implementation in hematopoietic stem cell gene transfer.  相似文献   

4.
5.
Lymphocytic choriomeningitis virus (LCMV) is a noncytopathic arenavirus shown to infect a broad range of different cell types. Here, we combined the beneficial characteristics of the LCMV glycoprotein (LCMV-GP) and those of retroviral vectors to generate a new, safe, and efficient gene transfer system. These LCMV-GP pseudotypes were systematically compared with vectors containing the widely used amphotropic murine leukemia virus envelope (A-MLVenv) or the vesicular stomatitis virus G protein (VSV-G). Production of LCMV-GP-pseudotyped oncoretroviral and lentiviral vectors by transient transfection resulted in vector titers similar to those with A-MLVenv or VSV-G. In contrast to A-MLVenv particles, LCMV-GP pseudotypes could be efficiently concentrated by ultracentrifugation without loss of vector titer. Unlike the cell-toxic VSV-G, a stable retroviral packaging cell line constitutively expressing LCMV-GP could be established. Vectors pseudotyped with LCMV-GP efficiently transduced many cell lines from different species and tissues relevant for gene therapy. Transduction of human glioma cells was studied in detail. These cells are a major target for cancer gene therapy and were transduced more efficiently with LCMV-GP-pseudotyped vectors than with the generally used A-MLVenv particles. The high stability, low toxicity, and broad host range make LCMV-GP-pseudotyped vectors attractive for gene transfer applications. The recombinant LCMV-GP-pseudotyped vectors will also allow functional characterization of naturally occurring and recombinant LCMV-GP variants.  相似文献   

6.
BACKGROUND: Wild-type RD114 virus is capable of generating syncytia during its replication, and it is believed that cell-free viruses direct the fusion of neighboring cells. The RD114 envelope (Env) that mediates this fusion event is now widely used to pseudotype retroviral and lentiviral vectors in gene therapy. Indeed, vectors pseudotyped with RD114 Env are very efficient to transfer genes into human hematopoietic cells, and they are resistant to human complement inactivation. In this study, we have tested the potential of RD114-pseudotyped vectors produced from the FLYRD18 packaging cell line to induce syncytia. METHODS: RD114-pseudotyped vectors produced from the FLYRD18 packaging cells were added on tumor cell lines, and the formation of syncytia was assessed by microscopy after cell fixation and methylene blue staining. The kinetics of syncytium formation was analyzed by time-lapse microscopy. Finally, the cytotoxic effect of RD114-pseudotyped vectors was measured by the MTT assay on tumor cells, and in combination with the TK/GCV strategy. RESULTS: We have found that these vectors were able to mediate cell-to-cell fusion of human tumor cell lines. A few hours after addition of the vector, cells started to aggregate to form syncytia that eventually evolved toward cell death 48 h postinfection. RD114-pseudotyped vectors were very efficient at killing human cancer cells, and they were also able to enhance dramatically the cytotoxic effect of the TK/GCV strategy. CONCLUSIONS: These findings indicate that RD114-pseudotyped vectors used alone, or in combination with a suicide gene therapy approach, have great potential for the treatment of cancer.  相似文献   

7.
Lentivirus vectors are being investigated as gene delivery vehicles for cystic fibrosis airway gene therapy. Vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped vectors transduce airway epithelia via receptors that are located predominantly on the basolateral surface of the airway epithelium. Effective transduction with VSV-G-pseudotyped vectors requires the use of a pre-treatment that disrupts epithelial tight junctions, allowing access to these basolateral receptors. In contrast, it has been reported that apically targeted lentiviral vectors allow efficient gene transfer in the absence of any pre-treatment. In a direct comparison of transduction by a VSV-G-pseudotyped vector, in combination with a pre-treatment with lysophosphatidylcholine (LPC), and the same vector pseudotyped with the apically targeted baculovirus GP64 envelope (without any pre-treatment), the GP64 vector was found to be significantly less efficient. However, when a pre-treatment with LPC was used the level of transduction with the GP64-pseudotyped lentiviral vector was not significantly different to that resulting from the VSV-G-pseudotyped vector. The cell types transduced with each vector were essentially the same, with the majority of cells transduced being respiratory (ciliated cells). However, unlike the VSV-G-pseudotyped vector, which results in persisting gene expression, transduction with the GP64-pseudotyped vector resulted in gene expression that declined to undetectable levels over six months, whether or not an LPC pre-treatment was used.  相似文献   

8.
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.  相似文献   

9.

Background

Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model.

Methodology/Principal Findings

We used a rodent xenograft model that recapitulates the invasive and angiogenic features of human glioblastoma to analyze the transduction pattern and therapeutic efficacy of lentiviral pseudotyped vectors. Both, lymphocytic choriomeningitis virus glycoprotein (LCMV-GP) and vesicular stomatitis virus glycoprotein (VSV-G) pseudotyped lentiviral vectors very efficiently transduced human glioblastoma cells in vitro and in vivo. In contrast, pseudotyped gammaretroviral vectors, similar to those evaluated for clinical therapy of glioblastoma, showed inefficient gene transfer in vitro and in vivo. Both pseudotyped lentiviral vectors transduced cancer stem-like cells characterized by their CD133-, nestin- and SOX2-expression, the ability to form spheroids in neural stem cell medium and to express astrocytic and neuronal differentiation markers under serum conditions. In a therapeutic approach using the suicide gene herpes simplex virus thymidine kinase (HSV-1-tk) fused to eGFP, both lentiviral vectors mediated a complete remission of solid tumors as seen on MRI resulting in a highly significant survival benefit (p<0.001) compared to control groups. In all recurrent tumors, surviving eGFP-positive tumor cells were found, advocating prodrug application for several cycles to even enhance and prolong the therapeutic effect.

Conclusions/Significance

In conclusion, lentiviral pseudotyped vectors are promising candidates for gene therapy of glioma in patients. The inefficient gene delivery by gammaretroviral vectors is in line with the results obtained in clinical therapy for GBM and thus confirms the high reproducibility of the invasive glioma animal model for translational research.  相似文献   

10.
Gammaretroviral vectors require cell division for efficient transduction. Thus, extended cell culture times are necessary for efficient transduction with gammaretroviral vectors, which in turn can lead to stem cell loss and impaired engraftment. Lentiviral vectors transduce nondividing cells and are therefore able to transduce stem cells in short transduction protocols. Here, we compared the short-term engraftment of lentivirally and gammaretrovirally transduced canine allogeneic DLA-matched littermate cells. A reduced conditioning regimen of 400 cGy total body irradiation was used in preparation for clinical studies. Two dogs received a graft of gammaretrovirally transduced CD34-selected cells. CD34(+) cells were prestimulated for 30 h and then exposed twice to concentrated RD114 pseudotype vector. Three dogs received lentivirally transduced CD34-selected cells. Cells were transduced overnight with concentrated VSV-G pseudotype lentiviral vector. The animals in the lentiviral group showed a significantly faster granulocyte recovery. VNTR analysis 40-50 days after transplantation revealed higher donor chimerism for the lentiviral group compared to the retroviral group. These data suggest that short lentiviral transduction protocols may be superior to extended gammaretroviral transduction protocols with respect to engraftment potential of transduced CD34(+) hematopoietic repopulating cells.  相似文献   

11.
M L Liu  B L Winther    M A Kay 《Journal of virology》1996,70(4):2497-2502
Recombinant retrovirus vectors are widely used for gene transfer studies. The recent development of a pseudotyped Moloney murine leukemia virus vector that contains the G envelope protein from the vesicular stomatitis virus allows for efficient concentration of vector and offers hope for potential use of these vectors for gene expression in vivo. A standard amphotropic vector expressing a serum marker protein, human alpha 1-antitrypsin, was infused into regenerating mouse liver and was 10-fold more efficient at achieving stable gene expression than was an equivalent pseudotyped vector. Discrepant results were obtained with cultured hepatocytes infected with an Escherichia coli beta-galactosidase-producing pseudotype and amphotropic vector. High rates of beta-galactosidase-positive cells were detected with the vesicular stomatitis virus G glycoprotein vector under culture conditions known to be relatively nonpermissive for retrovirus-mediated gene transfer. Subsequent studies demonstrated that beta-galactosidase protein was concentrated and copurified during pseudotype vector preparation, resulting in high rates of protein transfer rather than stable gene transfer, a process referred to as pseudotransduction. The cotransfer of protein with concentrated pseudotyped retroviruses indicates that caution must be used when interpreting gene transduction efficiencies in gene therapy experiments.  相似文献   

12.
Transduction of human embryonic stem cells by ecotropic retroviral vectors   总被引:2,自引:0,他引:2  
The steadily increasing availability of human embryonic stem (hES) cell lines has created strong interest in applying available tools for gene transfer in murine cells to human systems. Here we present a method for the transduction of hES cells with ecotropic retroviral vectors. hES cells were transiently transfected with a construct carrying the murine retrovirus receptor mCAT1. Subsequently, the cells were exposed to replication-deficient Moloney murine leukemia virus (MoMuLV) derivatives or pseudotyped lentiviral vectors. With oncoretroviral vectors, this procedure yields overall transduction efficiencies of up to 20% and permits selection of permanently transduced clones with high frequency. Selected clones maintained expression of pluripotency-associated markers and exhibited multi-germ layer differentiation both in vitro and in vivo. HES cell-derived somatic cells including neural progeny maintained high levels of transgene expression. Lentiviral vectors pseudotyped with the MoMuLV envelope could be introduced in the same manner with efficiencies of up to 33%. Transgene expression of lentivirally transduced hES cells remained permanent after differentiation even without selection pressure. Bypassing the regulatory issues associated with the use of amphotropic retroviral systems and exploiting the large pool of existing murine vectors, this method provides a safe and versatile tool for gene transfer and lineage analysis in hES cells and their progeny.  相似文献   

13.
Yamada K  McCarty DM  Madden VJ  Walsh CE 《BioTechniques》2003,34(5):1074-8, 1080
Recombinant lentiviral vectors stably transduce both dividing and nondividing cells. Virus pseudotyping with vesicular stomatitis virus envelope G (VSV-G) protein broadens the host range of lentiviral vector and enables vector concentration by ultra-centrifugation. However, as a result of virus vector concentration, contaminating protein debris derived from vector-producing cell culture media is toxic to target cells and reduces the transduction efficiency. Here we report a new and rapid technique for purifying lentivirus vector using the strong anion exchange column that significantly improves gene transfer rates. We purified VSV-G pseudotyped self-inactivating lentivirus vector and obtained two protein elution peaks (Peak 1 and Peak 2) corresponding to transducing activity. Peak 1 viral particles were 4-8 times more effective in transducing target cells than Peak 2 or non-purified (pre-HPLC) viral particles. We used purified lentivirus vector expressing the human Fanconi anemia group A (FANCA) gene to transduce murine hematopoietic stem/progenitor cells. We observed a consistent 2- to 3-fold increase in gene transfer rates using Peak 1 purified virus compared with non-purified virus. We conclude that the purification method using the HPLC system provides the highly purified virus vector that reduces cell toxicity and significantly improves gene transfer in primary cells.  相似文献   

14.
Specifically and effectively directing a therapeutic gene to its intended site of action is a critical issue for translation of basic genomics to clinical gene therapy. Delivering gene therapy vectors to specific cells or tissues through intravenous injection is the most desirable method for this purpose. In 2001, we reported successful targeted gene transduction in vitro utilizing both oncoretroviral and lentiviral vectors pseudotyped with a chimeric Sindbis virus envelope (ZZ SINDBIS). However, these pseudotypes mediated non-specific gene transduction to liver and spleen in vivo. To address this problem we generated the modified ZZ SINDBIS (termed m168) with significantly less non-specific infectivity. To investigate the ability of m168 pseudotyped lentiviral vector to mediate targeted gene transduction in vivo, we utilized a metastatic tumor model by using mouse melanoma cells engineered to express human P-glycoprotein. We administered the m168 pseudotyped vector conjugated with anti-P-glycoprotein antibody into the mice intravenously to target metastatic melanoma. The m168 pseudotyped vector selectively infected metastatic melanoma cells demonstrating successful targeted gene transduction in vivo. Targeting technology based upon m168 can be further modified for application not only to cancer but also potentially to genetic, neurologic, infectious and immune diseases, thereby expanding the future application of gene therapy.  相似文献   

15.
The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) serves as an efficient viral vector, not only for abundant gene expression in insect cells, but also for gene delivery into mammalian cells. Lentivirus vectors pseudotyped with the baculovirus envelope glycoprotein GP64 have been shown to acquire more potent gene transduction than those with vesicular stomatitis virus (VSV) envelope glycoprotein G. However, there are conflicting hypotheses about the molecular mechanisms of the entry of AcMNPV. Moreover, the mechanisms of the entry of pseudotyped viruses bearing GP64 into mammalian cells are not well characterized. Determination of the entry mechanisms of AcMNPV and the pseudotyped viruses bearing GP64 is important for future development of viral vectors that can deliver genes into mammalian cells with greater efficiency and specificity. In this study, we generated three pseudotyped VSVs, NPVpv, VSVpv, and MLVpv, bearing envelope proteins of AcMNPV, VSV, and murine leukemia virus, respectively. Depletion of membrane cholesterol by treatment with methyl-β-cyclodextrin, which removes cholesterol from cellular membranes, inhibited GP64-mediated internalization in a dose-dependent manner but did not inhibit attachment to the cell surface. Treatment of cells with inhibitors or the expression of dominant-negative mutants for dynamin- and clathrin-mediated endocytosis abrogated the internalization of AcMNPV and NPVpv into mammalian cells, whereas inhibition of caveolin-mediated endocytosis did not. Furthermore, inhibition of macropinocytosis reduced GP64-mediated internalization. These results suggest that cholesterol in the plasma membrane, dynamin- and clathrin-dependent endocytosis, and macropinocytosis play crucial roles in the entry of viruses bearing baculovirus GP64 into mammalian cells.  相似文献   

16.
Alphavirus glycoproteins have broad host ranges. Human immunodeficiency virus type 1 (HIV-1) vectors pseudotyped with their glycoproteins could extend the range of tissues that can be transduced in both humans and animal models. Here, we established stable producer cell lines for HIV vectors pseudotyped with alphavirus Ross River virus (RRV) and Semliki Forest virus (SFV) glycoproteins E2E1. RRV E2E1-stable clones could routinely produce high-titer pseudotyped vectors for at least 5 months. SFV E2E1-stable clones, however, produced relatively low titers. We examined the properties of RRV E2E1-pseudotyped vectors [HIV-1(RRV)] and compared them with amphotropic murine leukemia virus Env- and vesicular stomatitis virus glycoprotein G-pseudotyped vectors. HIV-1(RRV) displayed a number of characteristics which would be advantageous in ex vivo and in vivo experiments, including resistance to inactivation by heat-labile components in fresh human sera and thermostability at 37 degrees C. Upon single-step concentration by ultracentrifugation of HIV-1(RRV), we could achieve vector stocks with titers up to 6 x 10(7) IU/ml. HIV-1(RRV) efficiently transduced cells from several different species, including murine primary dendritic cells, but failed to transduce human and murine T cells as well as human hematopoietic stem cells (HSC). These results indicate that HIV-1(RRV) could be used in a number of applications including animal model experiments and suggest that expression of RRV cellular receptors is limited or absent in certain cell types such as T cells and human HSC.  相似文献   

17.
We investigated the ability of western equine encephalitis virus envelope glycoproteins (WEEV GP) to pseudotype lentiviral vectors. The titers of WEEV GP-pseudotyped human immunodeficiency virus type 1 (HIV) ranged as high as 8.0 × 104 IU/ml on permissive cells. Sera from WEEV-infected mice specifically neutralized these pseudotypes; cell transduction was also sensitive to changes in pH. The host range of the pseudotyped particles in vitro was somewhat limited, which is atypical for most alphaviruses. HIV vectors pseudotyped by WEEV GP may be a useful tool for characterizing WEEV cell binding and entry and screening for small-molecule inhibitors.  相似文献   

18.
To increase the safety and efficacy of human immunodeficiency virus vaccines, several groups have conducted studies using the macaque model with single-cycle replicating simian immunodeficiency viruses (SIVs). However, these constructs had poor or diminished efficacy compared to live attenuated vaccines. We previously showed that immunization of macaques with live attenuated SIV with a deletion in the nef gene and expressing gamma interferon (IFN-gamma) results in significantly enhanced safety and efficacy. To further enhance safety, we constructed and characterized single-cycle SIVs, pseudotyped with the glycoprotein of vesicular stomatitis virus, expressing different levels of macaque IFN-gamma. Expression of IFN-gamma did not alter the infectivity or antigenicity of pseudotyped SIV. The transduction of dendritic cells (DCs) by IFN-gamma-expressing particles resulted in the up-regulation of costimulatory and major histocompatibility complex molecules. Furthermore, T cells primed with DCs transduced by SIV particles expressing high levels of IFN-gamma and then stimulated with SIV induced significantly higher numbers of spot-forming cells in an enzyme-linked immunospot assay than did T cells primed with DCs transduced with SIV particles lacking the cytokine. In conclusion, we demonstrated that the transduction of DCs in vitro with pseudotyped single-cycle SIVs expressing IFN-gamma increased DC activation and augmented T-cell priming activity.  相似文献   

19.
Chromatography is deemed the most promising technology for large-scale purification of viral vectors. The authors have previously shown that heparin affinity chromatography could be successfully employed for the purification of VSV-G pseudotyped Moloney murine leukemia virus (MoMLV)-derived vectors giving excellent results in terms of recovery of active particles, reproducibility and selectivity. In this study, the authors examined whether the ability of retrovirus particles to specifically bind to heparin ligands is restricted to VSV-G pseudotypes produced by 293-based packaging cells. It is shown that VSV-G deficient retrovirus particles are captured by a heparin chromatography column as efficiently as VSV-G containing particles. Most strikingly, RD114 pseudotyped retrovirus particles derived from a HT1080-based cell line were found to bind heparin with the same affinity as 293-derived VSV-G pseudotypes. RD114 pseudotyped retrovirus particles were successfully isolated using heparin affinity chromatography obtaining good recoveries of functional particles (43%). These results indicate that heparin affinity chromatography can be extended to the purification of retroviral vectors produced by different packaging cell lines independently of the Env-protein used for pseudotyping.  相似文献   

20.
We present a flexible and highly specific targeting method for lentiviral vectors based on single-chain antibodies recognizing cell-surface antigens. We generated lentiviral vectors specific for human CD105(+) endothelial cells, human CD133(+) hematopoietic progenitors and mouse GluA-expressing neurons. Lentiviral vectors specific for CD105 or for CD20 transduced their target cells as efficiently as VSV-G pseudotyped vectors but discriminated between endothelial cells and lymphocytes in mixed cultures. CD133-targeted vectors transduced CD133(+) cultured hematopoietic progenitor cells more efficiently than VSV-G pseudotyped vectors, resulting in stable long-term transduction. Lentiviral vectors targeted to the glutamate receptor subunits GluA2 and GluA4 exhibited more than 94% specificity for neurons in cerebellar cultures and when injected into the adult mouse brain. We observed neuron-specific gene modification upon transfer of the Cre recombinase gene into the hippocampus of reporter mice. This approach allowed targeted gene transfer to many cell types of interest with an unprecedented degree of specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号