首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(10):1475-1490
Cellular stress responses often involve elevation of cytosolic calcium levels, and this has been suggested to stimulate autophagy. Here, however, we demonstrated that agents that alter intracellular calcium ion homeostasis and induce ER stress—the calcium ionophore A23187 and the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (TG)—potently inhibit autophagy. This anti-autophagic effect occurred under both nutrient-rich and amino acid starvation conditions, and was reflected by a strong reduction in autophagic degradation of long-lived proteins. Furthermore, we found that the calcium-modulating agents inhibited autophagosome biogenesis at a step after the acquisition of WIPI1, but prior to the closure of the autophagosome. The latter was evident from the virtually complete inability of A23187- or TG-treated cells to sequester cytosolic lactate dehydrogenase. Moreover, we observed a decrease in both the number and size of starvation-induced EGFP-LC3 puncta as well as reduced numbers of mRFP-LC3 puncta in a tandem fluorescent mRFP-EGFP-LC3 cell line. The anti-autophagic effect of A23187 and TG was independent of ER stress, as chemical or siRNA-mediated inhibition of the unfolded protein response did not alter the ability of the calcium modulators to block autophagy. Finally, and remarkably, we found that the anti-autophagic activity of the calcium modulators did not require sustained or bulk changes in cytosolic calcium levels. In conclusion, we propose that local perturbations in intracellular calcium levels can exert inhibitory effects on autophagy at the stage of autophagosome expansion and closure.  相似文献   

2.
Kang R  Livesey KM  Zeh HJ  Loze MT  Tang D 《Autophagy》2010,6(8):1209-1211
The autophagosome delivers damaged cytoplasmic constituents and proteins to the lysosome or to the extracellular space. Beclin 1, an essential: autophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members and has a critical role in the initiation of autophagy. How the Beclin 1 complex specifically promotes autophagy remains largely unknown. We have found that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy. HMGB1 shares considerable sequence homology with Beclin 1 in yeast, mice and human, representing an evolutionarily conserved regulatory step in early autophagosome formation. Endogenous HMGB1 competes with Bcl-2 for interaction with Beclin 1, and orients Beclin 1 to autophagosomes. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin 1 and sustaining autophagy. Taken together, these findings indicate that endogenous HMGB1 functions as an autophagy effector by regulation of autophagosome formation.  相似文献   

3.
Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum.  相似文献   

4.
Lian J  Karnak D  Xu L 《Autophagy》2010,6(8):1201-1203
Bcl-2 is a key dual regulator of autophagy and apoptosis, but how the level of Bcl-2 influences the cellular decision between autophagy and apoptosis is unclear. The natural BH3-mimetic (-)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, whereas apoptosis is preferentially induced in androgen-dependent or -independent cells with low Bcl-2. (-)-Gossypol induces autophagy via blocking Bcl-2-Beclin 1 interaction at the endoplasmic reticulum (ER), together with downregulating Bcl-2, upregulating Beclin 1 and activating the autophagic pathway. Furthermore, (-)-gossypol-induced autophagy is Beclin 1- and Atg5-dependent. These results provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which could facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.  相似文献   

5.
《Autophagy》2013,9(8):1209-1211
The autophagosome delivers damaged cytoplasmic constituents and proteins to the lysosome or to the extracellular space. Beclin 1, an essential

autophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members and has a critical role in the initiation of autophagy. How the Beclin 1 complex specifically promotes autophagy remains largely unknown. We have found that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy. HMGB1 shares considerable sequence homology with Beclin 1 in yeast, mice and human, representing an evolutionarily conserved regulatory step in early autophagosome formation. Endogenous HMGB1 competes with Bcl-2 for interaction with Beclin 1, and orients Beclin 1 to autophagosomes. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin 1 and sustaining autophagy. Taken together, these findings indicate that endogenous HMGB1 functions as an autophagy effector by regulation of autophagosome formation.  相似文献   

6.
The Beclin 1-VPS34 complex plays a crucial role in the induction of the autophagic process by generating PtdIns(3)P-rich membranes, which act as platforms for ATG protein recruitment and autophagosome nucleation. Several cofactors, such as Ambra1, ATG14 and UVRAG, are necessary for Beclin 1 complex activity. However, the mechanism by which Beclin 1 complex activity is: stimulated by autophagic stimuli has not yet been fully elucidated. Recently, we reported that autophagosome formation in mammalian cells is primed by Ambra1 release from the dynein motor complex. We found that Ambra1 specifically binds the dynein motor complex under normal conditions through a direct interaction with DLC1. When autophagy is induced, Ambra1-DLC1 are released from the dynein complex in an ULK1-dependent manner, and relocalize to the endoplasmic reticulum, thus enabling autophagosome nucleation. In addition, we found that both DLC1 downregulation and Ambra1 mutations in its DLC1-binding sites strongly enhance autophagosome formation. Ambra1 is therefore not only a cofactor of Beclin 1 in favoring its kinase-associated activity, but also a crucial upstream regulator of autophagy initiation.  相似文献   

7.
Vikramjit Lahiri 《Autophagy》2018,14(7):1107-1109
Reticulophagy is the conserved macroautophagic/autophagic degradation of the endoplasmic reticulum (ER) in response to ER stress or general nutrient deprivation. Sequestration of the ER by phagophores plays an important role in regulating ER size and homeostasis. In their recent work, Smith et al. have discovered that the ER-localized protein CCPG1 is a novel mammalian reticulophagy receptor that interacts with core autophagy machinery components—LC3, GABARAP and RB1CC1—and regulates reticulophagy.  相似文献   

8.
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop; Bcl-2 dissociation from Beclin 1; and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing nonstructured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.  相似文献   

9.
Bim is a proapoptotic BH3-only Bcl-2 family member.?In response to death stimuli, Bim dissociates from the dynein light chain 1 (DYNLL1/LC8), where it is inactive, and can then initiate Bax/Bak-mediated mitochondria-dependent apoptosis. We found that Bim depletion increases autophagosome synthesis in cells and in?vivo, and this effect is inhibited by overexpression of cell death-deficient Bim. Bim inhibits autophagy by interacting with Beclin 1, an autophagy regulator, and this interaction is facilitated by LC8. Bim bridges the Beclin 1-LC8 interaction and thereby inhibits autophagy by mislocalizing Beclin 1 to the dynein motor complex. Starvation, an autophagic stimulus, induces Bim phosphorylation, which abrogates LC8 binding to Bim, leading to dissociation of Bim and Beclin 1. Our data suggest that Bim switches locations between apoptosis-inactive/autophagy-inhibitory and apoptosis-active/autophagy-permissive sites.  相似文献   

10.
In addition to mitochondria, BCL‐2 is located at the endoplasmic reticulum (ER) where it is a constituent of several distinct complexes. Here, we identify the BCL‐2‐interacting protein at the ER, nutrient‐deprivation autophagy factor‐1 (NAF‐1)—a bitopic integral membrane protein whose defective expression underlies the aetiology of the neurodegenerative disorder Wolfram syndrome 2 (WFS2). NAF‐1 contains a two iron–two sulphur coordinating domain within its cytosolic region, which is necessary, but not sufficient for interaction with BCL‐2. NAF‐1 is displaced from BCL‐2 by the ER‐restricted BH3‐only protein BIK and contributes to regulation of BIK‐initiated autophagy, but not BIK‐dependent activation of caspases. Similar to BCL‐2, NAF‐1 is found in association with the inositol 1,4,5‐triphosphate receptor and is required for BCL‐2‐mediated depression of ER Ca2+ stores. During nutrient deprivation as a physiological stimulus of autophagy, BCL‐2 is known to function through inhibition of the autophagy effector and tumour suppressor Beclin 1. NAF‐1 is required in this pathway for BCL‐2 at the ER to functionally antagonize Beclin 1‐dependent autophagy. Thus, NAF‐1 is a BCL‐2‐associated co‐factor that targets BCL‐2 for antagonism of the autophagy pathway at the ER.  相似文献   

11.
Endoplasmic reticulum stress triggers autophagy   总被引:1,自引:0,他引:1  
Eukaryotic cells have evolved strategies to respond to stress conditions. For example, autophagy in yeast is primarily a response to the stress of nutrient limitation. Autophagy is a catabolic process for the degradation and recycling of cytosolic, long lived, or aggregated proteins and excess or defective organelles. In this study, we demonstrate a new pathway for the induction of autophagy. In the endoplasmic reticulum (ER), accumulation of misfolded proteins causes stress and activates the unfolded protein response to induce the expression of chaperones and proteins involved in the recovery process. ER stress stimulated the assembly of the pre-autophagosomal structure. In addition, autophagosome formation and transport to the vacuole were stimulated in an Atg protein-dependent manner. Finally, Atg1 kinase activity reflects both the nutritional status and autophagic state of the cell; starvation-induced autophagy results in increased Atg1 kinase activity. We found that Atg1 had high kinase activity during ER stress-induced autophagy. Together, these results indicate that ER stress can induce an autophagic response.  相似文献   

12.
Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well‐characterized autophagy‐related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2‐ and DFCP1‐positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and β‐oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER‐localized regulator of autophagosome biogenesis and lipid mobilization.  相似文献   

13.
Autophagy, a catabolic pathway that delivers cellular components to lysosomes for degradation, can be activated by stressful conditions such as nutrient starvation and endoplasmic reticulum (ER) stress. We report that thapsigargin, an ER stressor widely used to induce autophagy, in fact blocks autophagy. Thapsigargin does not affect autophagosome formation but leads to accumulation of mature autophagosomes by blocking autophagosome fusion with the endocytic system. Strikingly, thapsigargin has no effect on endocytosis-mediated degradation of epidermal growth factor receptor. Molecularly, while both Rab7 and Vps16 are essential regulatory components for endocytic fusion with lysosomes, we found that Rab7 but not Vps16 is required for complete autophagy flux, and that thapsigargin blocks recruitment of Rab7 to autophagosomes. Therefore, autophagosomal-lysosomal fusion must be governed by a distinct molecular mechanism compared to general endocytic fusion.  相似文献   

14.
A natural BH3-mimetic, small-molecule inhibitor of Bcl-2, (−)-gossypol, shows promise in ongoing phase II and III clinical trials for human prostate cancer. In this study we show that (−)-gossypol preferentially induces autophagy in androgen-independent (AI) prostate cancer cells that have high levels of Bcl-2 and are resistant to apoptosis, both in vitro and in vivo, but not in androgen-dependent (AD) cells with low Bcl-2 and sensitive to apoptosis. The Bcl-2 inhibitor induces autophagy through blocking Bcl-2–Beclin1 interaction, together with downregulating Bcl-2, upregulating Beclin1, and activating the autophagic pathway. The (−)-gossypol-induced autophagy is dependent on Beclin1 and Atg5. Our results show for the first time that (−)-gossypol can also interrupt the interactions between Beclin1 and Bcl-2/Bcl-xL at endoplasmic reticulum, thus releasing the BH3-only pro-autophagic protein Beclin1, which in turn triggers the autophagic cascade. Oral administration of (−)-gossypol significantly inhibited the growth of AI prostate cancer xenografts, representing a promising new regimen for the treatment of human hormone-refractory prostate cancer with Bcl-2 overexpression. Our data provide new insights into the mode of cell death induced by Bcl-2 inhibitors, which will facilitate the rational design of clinical trials by selecting patients who are most likely to benefit from the Bcl-2-targeted molecular therapy.  相似文献   

15.
Calcium can play an important role in the regulation of autophagy. We previously reported that exogenously introduced calcium in the form of calcium phosphate precipitates (CPP) induces autophagy. Here we showed that CPP-induced autophagy required the classical autophagic machinery, including the autophagosome initiating molecules FIP200 and Beclin 1, as well as molecules involved in the autophagosome membrane extension, Atg4, Atg5 and Atg3. On the other hand, Atg9 seemed to place a restriction on CPP-induced autophagy. Loss of Atg9 led to enhanced LC3 punctation and enhanced p62 degradation. CPP-induced autophagy was independent of mTOR and reactive oxygen species. It also did not affect MAP kinase activation and ER stress. DFCP1 is an ER-resident molecule that binds to phosphatidylinositol 3-phosphate. CPP activated DFCP1 punctation in a class III phosphatidylinositol-3-kinase and calcium dependent manner, and caused the association of DFCP1 puncta with the autophagosomes. Consistently, ER membranes, but not Golgi or mitochondrial membranes, colocalized with CPP-induced LC3 positive autophagosomes. These data suggest that CPP-induced autophagosome formation involves the interaction with the ER membrane.  相似文献   

16.
Cardiac myocytes undergo programmed cell death as a result of ischemia/reperfusion (I/R). One feature of I/R injury is the increased presence of autophagosomes. However, to date it is not known whether macroautophagy functions as a protective pathway, contributes to programmed cell death, or is an irrelevant event during cardiac I/R injury. We employed simulated I/R of cardiac HL-1 cells as an in vitro model of I/R injury to the heart. To assess macroautophagy, we quantified autophagosome generation and degradation (autophagic flux), as determined by steady-state levels of autophagosomes in relation to lysosomal inhibitor-mediated accumulation of autophagosomes. We found that I/R impaired both formation and downstream lysosomal degradation of autophagosomes. Overexpression of Beclin1 enhanced autophagic flux following I/R and significantly reduced activation of pro-apoptotic Bax, whereas RNA interference knockdown of Beclin1 increased Bax activation. Bcl-2 and Bcl-x(L) were protective against I/R injury, and expression of a Beclin1 Bcl-2/-x(L) binding domain mutant resulted in decreased autophagic flux and did not protect against I/R injury. Overexpression of Atg5, a component of the autophagosomal machinery downstream of Beclin1, did not affect cellular injury, whereas expression of a dominant negative mutant of Atg5 increased cellular injury. These results demonstrate that autophagic flux is impaired at the level of both induction and degradation and that enhancing autophagy constitutes a powerful and previously uncharacterized protective mechanism against I/R injury to the heart cell.  相似文献   

17.
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular bulk degradation pathway that plays critical roles in eliminating intracellular pathogens, presenting endogenous Ags, and regulating T lymphocyte survival and proliferation. In this study, we have investigated the role of autophagy in regulating the endoplasmic reticulum (ER) compartment in T lymphocytes. We found that ER content is expanded in mature autophagy-related protein (Atg) 7-deficient T lymphocytes. Atg7-deficient T cells stimulated through the TCR display impaired influx, but not efflux, of calcium, and ER calcium stores are increased in Atg7-deficient T cells. Treatment with the ER sarco/ER Ca(2+)-ATPase pump inhibitor thapsigargin rescues the calcium influx defect in Atg7-deficient T lymphocytes, suggesting that this impairment is caused by an intrinsic defect in ER. Furthermore, we found that the stimulation-induced redistribution of stromal interaction molecule-1, a critical event for the store-operated Ca(2+) release-activated Ca(2+) channel opening, is impaired in Atg7-deficient T cells. Together, these findings indicate that the expanded ER compartment in Atg7-deficient T cells contains increased calcium stores, and the inability of these stores to be depleted causes defective calcium influx in these cells. Our results demonstrate that autophagy plays an important role in maintaining ER and calcium homeostasis in T lymphocytes.  相似文献   

18.
《Autophagy》2013,9(4):374-376
Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-XL) by virtue of its BH3 domain, an amphipathic α-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-XL. The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-XL. This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (ER-phagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-XL can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-XL complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-XL complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-XL at the level of the endoplasmic reticulum.

Addendum to:

Functional and Physical Interaction Between Bcl-XL and a BH3-Like Domain in Beclin-1

M.C. Maiuri, G. Le Toumelin, A. Criollo, J.-C. Rain, F. Gautier, P. Juin, E. Tasdemir, G. Pierron, K. Troulinaki, N. Tavernarakis, J.A. Hickman, O. Geneste and G. Kroemer

EMBO J 2007; In press  相似文献   

19.
The molecular mechanisms underlying microtubule participation in autophagy are not known. In this study, we show that starvation-induced autophagosome formation requires the most dynamic microtubule subset. Upon nutrient deprivation, labile microtubules specifically recruit markers of autophagosome formation like class III-phosphatidylinositol kinase, WIPI-1, the Atg12-Atg5 conjugate, and LC3-I, whereas mature autophagosomes may bind to stable microtubules. We further found that upon nutrient deprivation, tubulin acetylation increases both in labile and stable microtubules and is required to allow autophagy stimulation. Tubulin hyperacetylation on lysine 40 enhances kinesin-1 and JIP-1 recruitment on microtubules and allows JNK phosphorylation and activation. JNK, in turn, triggers the release of Beclin 1 from Bcl-2-Beclin 1 complexes and its recruitment on microtubules where it may initiate autophagosome formation. Finally, although kinesin-1 functions to carry autophagosomes in basal conditions, it is not involved in motoring autophagosomes after nutrient deprivation. Our results show that the dynamics of microtubules and tubulin post-translational modifications play a major role in the regulation of starvation-induced autophagy.  相似文献   

20.
Tomer Shpilka  Zvulun Elazar 《Autophagy》2015,11(11):2130-2131
The source of the autophagic membrane and the regulation of autophagosome biogenesis are still elusive open issues in the field of autophagy. In our recent study of the role of lipid droplets (LDs) and their constituents in autophagy, we provided evidence that both the biogenesis of LDs and its lipolysis by specific lipases are important for autophagosome biogenesis. Our study sheds new light on the source of the autophagic membrane and suggests that a flow of membranes from the endoplasmic reticulum (ER) to LDs, and from LDs to the ER, is essential for autophagosome biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号