首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was shown earlier that in etiolated bean (Phaseolus vulgaris, var. red kidney) leaves exposed to continuous light for a short time and then transferred to darkness a reorganization of their photosystem II (PSII) unit components occurs. This reorganization involves disorganization of the light-harvesting complex of PSII (LHC-II), destruction of its chlorophyll b and the 25 kilodalton polypeptide, and reuse of its chlorophyll a for the formation of additional, small in size, PSII units (Argyroudi-Akoyunoglou, Akoyunoglou, Kalosakas, Akoyunoglou 1982 Plant Physiol 70: 1242-1248). The present study further shows that parallel to the PSII unit reorganization a reorganization of the PSI unit components also occurs: upon transfer to darkness the 24, 23, and 21 kilodalton polypeptides, components of the light-harvesting complex of PSI (LHC-I), are decreased, the 69 kilodalton polypeptide, component of the chlorophyll a-rich P700-protein complex (CPI), is increased and new smallsized PSI units are formed. Concomitantly, the cytochrome f/chlorophyll and the cytochrome b/chlorophyll ratios are gradually increased. This suggests that the concentration of the electron transport components is also modulated in darkness to allow for adequate electron flow to occur between the newly synthesized PSII and PSI units.  相似文献   

2.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

3.
Chlamydomonas reinhardtii was grown at photon flux densities (PFDs) ranging from 47 to 400 μE.m-2 s-1. The total cellular content of chlorophyll (Chl) was twice as high in the low light (LL) versus high light (HL) grown cells. On an equal Chl basis, photosystem II (PSII) and cytochrome f (Cyt f) content was higher in HL cells, but photosystem I (PSI) concentration displayed little variation with the light intensity during cell growth. Consequently, there was a shift in the ratio of PSII / PSI and Cyt / PSI from near unity in LL cells to greater than two in HL cells. The functional Chl antenna size of PSII and PSI ranged from 460 and 170 Chl (a + b)in HL-grown cells to 620 and 370 Chl (a+ b)in LL-grown cells, respectively. The initial slope of the Chl-specific photosyn-thesis-irradiance (P-I) curve was similar in LL- and HL-grown cells, but the light saturated rate of photosynthesis was lower under LL. The response to low light was beneficial at the cellular level, since there was an enhancement of photosynthesis in LL. The PFD for the onset of light saturation, 1 was a factor of 2 lower in LL- relative to HL-grown photosythetic membranes. Since growth PFD varied by a factor of ten, photosynthesis shifted from being light-limited in the LL regime to light-saturated in the HL regime. The requirement for balanced absorption of light by the two photosystems constrains the PSII / PSI ratio to near unity when growth is light-limited, but such a constraint does not apply in HL conditions. Instead the concentration of individual electron transport complexes way be related to the pool size necessary for maximum rates of steady-state electron transport. Thus the stoichiometry of electron transport complexes changes in response to growth PFD and this change is correlated with the response flexlbility of algal photosynthesis in diverse light environments.  相似文献   

4.
5.
《BBA》2020,1861(4):148064
Some cyanobacteria remodel their photosynthetic apparatus by a process known as Far-Red Light Photoacclimation (FaRLiP). Specific subunits of the phycobilisome (PBS), photosystem I (PSI), and photosystem II (PSII) complexes produced in visible light are replaced by paralogous subunits encoded within a conserved FaRLiP gene cluster when cells are grown in far-red light (FRL; λ = 700–800 nm). FRL-PSII complexes from the FaRLiP cyanobacterium, Synechococcus sp. PCC 7335, were purified and shown to contain Chl a, Chl d, Chl f, and pheophytin a, while FRL-PSI complexes contained only Chl a and Chl f. The spectroscopic properties of purified photosynthetic complexes from Synechococcus sp. PCC 7335 were determined individually, and energy transfer kinetics among PBS, PSII, and PSI were analyzed by time-resolved fluorescence (TRF) spectroscopy. Direct energy transfer from PSII to PSI was observed in cells (and thylakoids) grown in red light (RL), and possible routes of energy transfer in both RL- and FRL-grown cells were inferred. Three structural arrangements for RL-PSI were observed by atomic force microscopy of thylakoid membranes, but only arrays of trimeric FRL-PSI were observed in thylakoids from FRL-grown cells. Cells grown in FRL synthesized the FRL-specific complexes but also continued to synthesize some PBS and PSII complexes identical to those produced in RL. Although the light-harvesting efficiency of photosynthetic complexes produced in FRL might be lower in white light than the complexes produced in cells acclimated to white light, the FRL-complexes provide cells with the flexibility to utilize both visible and FRL to support oxygenic photosynthesis.This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.  相似文献   

6.
Obokata J 《Plant physiology》1987,84(2):535-540
Synthesis and assembly of photosystems (PS) I and II polypeptides in etiochloroplasts isolated from greening wheat (Triticum aestivum L. cv Norin 61) seedlings were studied. The isolated etiochloroplasts synthesized PSI polypeptides of 66 and 15 kilodaltons, PSII polypeptides of 46 and 42 kilodaltons, and atrazine-binding 34 to 32 kilodalton polypeptide. Their assembly processes in the thylakoid membrane were studied by pulse-chase labeling with [35S]methionine, mild solubilization of the thylakoid membrane with Triton X-100, sucrose density gradient centrifugation, and polyacrylamide gel electrophoresis. The newly synthesized polypeptides of 66, 46, 42, 34, and 32 kilodaltons were first integrated into the complexes of 7.5, 5.9, 7.5, 6.3, and 7.5 Svedberg units, respectively, in 20 minutes. After the chase with excess amount of methionine for 100 min, they were found in complexes of 9.5, 9.1, 9.1, 9.1, and 9.1 Svedberg units, respectively. In this condition, stained polypeptides of PSI and PSII were found in the complexes of 11.1 and 10.3 Svedberg units, respectively. These results indicated that newly synthesized PSI or PSII polypeptides are integrated into intermediate complexes, but not complete complexes in the isolated etiochloroplasts. The relationship between the processing of the atrazine-binding 32 kilodalton polypeptide and its assembly into the PSII complex is also discussed.  相似文献   

7.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

8.
Changes in the protein secondary structure and electron transport activity of the Triton X-100-treated photosystem I (PSI) and photosystem II (PSII) complexes after strong illumination treatment were studied using Fourier transform-infrared (FT-IR) spectroscopy and an oxygen electrode. Short periods of photoinhibitory treatment led to obvious decreases in the rates of PSI-mediated electron transport activity and PSII-mediated oxygen evolution in the native or Triton-treated PSI and PSII complexes. In the native PSI and PSII complexes, the protein secondary structures had little changes after the photoinhibitory treatment. However, in both Triton-treated PSI and PSII complexes, short photoinhibition times caused significant loss of -helical content and increase of -sheet structure, similar to the conformational changes in samples of Triton-treated PSI and PSII complexes after long periods of dark incubation. Our results demonstrate that strong-light treatment to the Triton-treated PSI and PSII complexes accelerates destruction of the transmembrane structure of proteins in the two photosynthetic membranes.  相似文献   

9.
Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation.  相似文献   

10.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   

11.
In chloroplasts, photosynthetic electron transport complexes interact with each other via the mobile electron carriers (plastoquinone and plastocyanin) which are in surplus amounts with respect to photosystem I and photosystem II (PSI and PSII), and the cytochrome b 6 f complex. In this work, we analyze experimental data on the light-induced redox transients of photoreaction center P700 in chloroplasts within the framework of our mathematical model. This analysis suggests that during the action of a strong actinic light, even significant attenuation of PSII [for instance, in the result of inhibition of a part of PSII complexes by DCMU or due to non-photochemical quenching (NPQ)] will not cause drastic shortage of electron flow through PSI. This can be explained by “electronic” and/or “excitonic” connectivity between different PSII units. At strong AL, the overall flux of electrons between PSII and PSI will maintain at a high level even with the attenuation of PSII activity, provided the rate-limiting step of electron transfer is beyond the stage of PQH2 formation. Results of our study are briefly discussed in the context of NPQ-dependent mechanism of chloroplast protection against light stress.  相似文献   

12.
Photoacclimation involves the modification of components of the light and dark reactions to optimize photosynthesis following changes in available light. All of the energy required for photosynthesis comes from linear electron transport through PSII and PSI and is dependent upon the amount of light harvested by PSII relative to PSI (a*PSII and a*PSI). The amount of light harvested is determined by the effective absorption cross‐sections (σPSII, σPSI) and cellular contents of the PSII and PSI reaction center complexes (RCII, RCI). Here, we examine the effective absorption cross‐sections and reaction center contents for calcifying (B11) and noncalcifying (B92) strains of the globally important coccolithophorid Emiliania huxleyi (Lohmann) W. H. Hay et H. Mohler when grown under various photon flux densities (PFDs). The two strains displayed different “strategies” of acclimation. As growth PFD increased, B11 preferentially changed σ and the cellular content of chl a per cell over PSU “size” (the total cellular chl a content associated with the reaction center complexes); strain B92 preferentially changed PSU size over the cellular content of reaction complexes. Neither strategy was specifically consistent with the majority of previous studies from other microalgal species. For both strains, cellular light absorption for PSII and PSI was maintained close to unity across the range of growth PFDs since changes of σPSII and σPSI were reciprocated by those of RCIIs and RCIs per cell. Our results demonstrate a significant adaptive flexibility of E. huxleyi to photoacclimate. Finally, we calculated the amount of chl a associated with either photosystem to consider our interpretations of photoacclimation based on conventional determinations of PSU size.  相似文献   

13.
The adaptability of the thylakoid membrane to extended photoperiod (from natural to 24 h) was studied using a photoperiod-sensitive species ( Lycopersicon esculentum Mill. cv. Trend) and a non-photoperiod-sensitive species ( Capsicum annuum L. cv. Delphin). Our results have shown that thylakoid membranes of both species adapt to an extended photoperiod by increasing their photosystem II to photosystem I ratio (PSII/PSI) in order to provide a more balanced energy distribution between both photosystems to improve quantum yield. In tomato plants, these results correspond with a lower chlorophyll (Chl) a/b ratio, a decrease in Chl associated with PSI light-harvesting chlorophyll a/b protein complexes and with an increase in Chl associated with PSII light-harvesting chlorophyll a/b protein complexes. In spite of these changes, the electron transport capacity through PSII and PSI per unit of Chl and the light saturation point of PSII remained unchanged. The inability of tomato plants to use supplemental light for an extended photoperiod is not the result of photoinhibitory conditions. In pepper plants a significant increase in electron transport capacity and in the light saturation point of PSII was found. There was a significant increase in CO2 assimilation when the light period was increased from 12 to 24 h. In contrast to tomato, pepper plants adapt to a 24-h photoperiod by increasing their carboxylation capacity which is accompanied by an increase in electron transport capacity and the light saturation point.  相似文献   

14.
To clarify how the components of the entire photosynthetic electron transport chain in response to drought stress in maize. The activities of photosystem II (PSII), photosystem I (PSI), and the electron transport chain between PSII and PSI of maize were investigated by prompt fluorescence (PF), delayed fluorescence (DF) and 820 nm modulated reflection (MR). Maize (Zea mays L.) plants were subjected to different levels of soil water availability including control, moderate and severe drought stress. A significant decrease in ?E0, Ψ0 and PIABS was found in maize treated with moderate drought stress. A significant increase in ABS/RC was observed, but there were no significant change in the fast MR phase and the amplitude of DF under moderate drought stress compared to the control. Under severe drought stress, the exchange capacity between QA to QB, reoxidation capacity of plastoquinol, and the oxidation and re-reduction rates of PC and P700 all decreased. These results demonstrated that moderate drought stress reduced the photochemical activity of PSII from QA to PQH2, while the photochemical activity of PSI was unscathed. However, severe drought stress inhibited the entire electron transport chain from the donor side of PSII to PSI-end electron acceptors. In addition, the photochemical activity of PSII is more sensitive to drought stress than PSI.  相似文献   

15.
Heber U  Walker D 《Plant physiology》1992,100(4):1621-1626
Coupled cyclic electron transport is assigned a role in the protection of leaves against photoinhibition in addition to its role in ATP synthesis. In leaves, as in reconstituted thylakoid systems, cyclic electron transport requires “poising,” i.e. availability of electrons at the reducing side of photosystem I (PSI) and the presence of some oxidized plastoquinone between photosystem II (PSII) and PSI. Under self-regulatory poising conditions that are established when carbon dioxide limits photosynthesis at high light intensities, and particularly when stomata are partially or fully closed as a result of water stress, coupled cyclic electron transport controls linear electron transport by helping to establish a proton gradient large enough to decrease PSII activity and electron flow to PSI. This brings electron donation by PSII, and electron consumption by available electron acceptors, into a balance in which PSI becomes more oxidized than it is during fast carbon assimilation. Avoidance of overreduction of the electron transport chain is a prerequisite for the efficient protection of the photosynthetic apparatus against photoinactivation.  相似文献   

16.
The effect of light quality on the composition, function and structure of the thylakoid membranes, as well as on the photosynthetic rates of intact fronds from Asplenium australasicum, a shade plant, grown in blue, white, or red light of equal intensity (50 microeinsteins per square meter per second) was investigated. When compared with those isolated from plants grown in white and blue light, thylakoids from plants grown in red light have higher chlorophyll a/chlorophyll b ratios and lower amounts of light-harvesting chlorophyll a/b-protein complexes than those grown in blue light. On a chlorophyll basis, there were higher levels of PSII reaction centers, cytochrome f and coupling factor activity in thylakoids from red light-grown ferns, but lower levels of PSI reaction centers and plastoquinone. The red light-grown ferns had a higher PSII/PSI reaction center ratio of 4.1 compared to 2.1 in blue light-grown ferns, and a larger apparent PSI unit size and a lower PSII unit size. The CO2 assimilation rates in fronds from red light-grown ferns were lower on a unit area or fresh weight basis, but higher on a chlorophyll basis, reflecting the higher levels of electron carriers and electron transport in the thylakoids.

The structure of thylakoids isolated from plants grown under the three light treatments was similar, with no significant differences in the number of thylakoids per granal stack or the ratio of appressed membrane length/nonappressed membrane length. The large freeze-fracture particles had the same size in the red-, blue-, and white-grown ferns, but there were some differences in their density. Light quality is an important factor in the regulation of the composition and function of thylakoid membranes, but the effects depend upon the plant species.

  相似文献   

17.
The reversible associations between the light-harvesting complexes (LHCs) and the core complexes of PSI and PSII are essential for the photoacclimation mechanisms in higher plants. Two types of Chls, Chl a and Chl b, both function in light harvesting and are required for the biogenesis of the photosystems. Chl b-less plants have been studied to determine the function of the LHCs because the Chl b deficiency has severe effects specific to the LHCs. Previous studies have shown that the amounts of the LHCs, especially the LHCII trimer, were decreased in the mutants; however, it is still unclear whether Chl b is required for the assembly of the LHCs and for the association of the LHCs with PSI and PSII. Here, to reveal the function of Chl b in the LHCs, we investigated the oligomeric states of the LHCs, PSI and PSII in the Arabidopsis Chl b-less mutant. A two-dimensional blue native-PAGE/SDS-PAGE demonstrated that the PSI-LHCI supercomplex was fully assembled in the absence of Chl b, whereas the trimeric LHCII and PSII-LHCII supercomplexes were not detected. The PSI-NAD(P)H dehydrogenase (NDH) supercomplexes were also assembled in the mutant. Furthermore, we detected two forms of monomeric LHC proteins. The faster migrating forms, which were detected primarily in the mutant, were probably apo-LHC proteins, whereas the slower migrating forms were probably the LHC proteins that contained Chl a. These findings increase our understanding of the Chl b function in the assembly of LHCs and the association of the LHCs with PSI, PSII and NDH.  相似文献   

18.
Cyanobacterial cells have two autonomous internal membrane systems, plasma membrane and thylakoid membrane. In these oxygenic photosynthetic organisms the assembly of the large membrane protein complex photosystem II (PSII) is an intricate process that requires the recruitment of numerous protein subunits and cofactors involved in excitation and electron transfer processes. Precise control of this assembly process is necessary because electron transfer reactions in partially assembled PSII can lead to oxidative damage and degradation of the protein complex. In this communication we demonstrate that the activation of PSII electron transfer reactions in the cyanobacterium Synechocystis sp. PCC 6803 takes place sequentially. In this organism partially assembled PSII complexes can be detected in the plasma membrane. We have determined that such PSII complexes can undergo light-induced charge separation and contain a functional electron acceptor side but not an assembled donor side. In contrast, PSII complexes in thylakoid membrane are fully assembled and capable of multiple turnovers. We conclude that PSII reaction center cores assembled in the plasma membrane are photochemically competent and can catalyze single turnovers. We propose that upon transfer of such PSII core complexes to the thylakoid membrane, additional proteins are incorporated followed by binding and activation of various donor side cofactors. Such a stepwise process protects cyanobacterial cells from potentially harmful consequences of performing water oxidation in a partially assembled PSII complex before it reaches its final destination in the thylakoid membrane.  相似文献   

19.
Light-harvesting capacities of photosystem I (PSI) and photosystemII (PSII) in a wild-type and three chlorophyll b-deficient mutantstrains of rice were determined by measuring the initial slopeof light-response curve of PSI and PSII electron transport andkinetics of light-induced redox changes of P-700 and QA, respectively.The light-harvesting capacity of PSI determined by the two methodswas only moderately reduced by chlorophyll b-deficiency. Analysisof the fluorescence induction that monitors time course of QAphotoreduction showed that both relative abundance and antennasize of PSIIa decrease with increasing deficiency of chlorophyllb and there is only PSII in chlorina 2 which totallylacks chlorophyll b. The numbers of antenna chlorophyll moleculesassociated with the mutant PSII centers were, therefore, threeto five times smaller than that of PSIIa in the wild type rice.Rates of PSII electron transport determined on the basis ofPSII centers in the three mutants were 60–70% of thatin the normal plant at all photon flux densities examined, indicatingthat substantial portions of the mutant PSII centers are inactivein electron transport. The initial slopes of light-responsecurves of PSII electron transport revealed that the functionalantenna sizes of the active populations of PSII centers in themutants correspond to about half that of PSII in the wild typerice. Thus, the numbers of chlorophyll molecules that serveas antenna of the oxygen-evolving PSII centers in the mutantsare significantly larger than those that are actually associatedwith each PSII center. It is proposed that the inactive PSIIserves as an antenna of the active PSII in the three chlorophyllb-deficient mutants of rice. In spite of the reduced antennasize of PSII, therefore, the total light-harvesting capacityof PSII approximately matches that of PSI in the mutants. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

20.
Accompanying the CAM induction of Mesembryanthemum crystallinum L. grown in high salinity there are changes in the enzymes of carbon metabolism. However, there are no changes in the electron transport activities, Chla/b ratios or in the distribution of chlorophyll amongst the various pigment-protein complexes of isolated thylakoids. Hence with CAM induction there are no changes in the photochemical apparatus of M. crystallinum thylakoids. Despite comparable amounts of chlorophylla/b-proteins of photosystem II to those found in typical C3 sun plants, both the C3 and CAM M. crystallinum chloroplasts have relatively more photosystem II, and, concommitantly, less photosystem I complex. This is consistent with greater fluorescence emission at 685 and 695 nm, and lower emission at 735 nm (measured at 77 K) than typically found for C3 plants, whether sun or shade species. Photoinhibition of isolated C3 and CAM thylakoids by white light led to comparable decreases in electron transport capacities and fluorescence emission at 77 K with photosystem II being more affected than PSI. We suggest however, that the presence of more core PSII complexes relative to PSI complexes in this CAM-inducible plant, may provide an additional strategy to mitigate photoinhibition in the short-term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号