首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tehei M  Zaccai G 《The FEBS journal》2007,274(16):4034-4043
Work on the relationship between hyperthermophile protein dynamics, stability and activity is reviewed. Neutron spectroscopy has been applied to measure and compare the macromolecular dynamics of various hyperthermophilic and mesophilic proteins, under different conditions. First, molecular dynamics have been analyzed for the hyperthermophile malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, the lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The neutron scattering approach has provided independent measurements of the global flexibility and structural resilience of each protein, and it has been demonstrated that macromolecular dynamics represents one of the molecular mechanisms of thermoadaptation. The resilience was found to be higher for the hyperthermophilic protein, thus ensuring similar flexibilities in both enzymes at their optimal activity temperature. Second, the neutron method has been developed to quantify the average macromolecular flexibility and resilience within the natural crowded environment of the cell, and mean macromolecular motions have been measured in vivo in psychrophile, mesophile, thermophile and hyperthermophile bacteria. The macromolecular resilience in bacteria was found to increase with adaptation to high temperatures, whereas flexibility was maintained within narrow limits, independent of physiological temperature for all cells in their active state. Third, macromolecular motions have been measured in free and immobilized dihydrofolate reductase from Escherichia coli. The immobilized mesophilic enzyme has increased stability and decreased activity, so that its properties are changed to resemble those of a thermophilic enzyme. Quasi-elastic neutron scattering measurements have also been performed to probe the protein motions. Compared to the free enzyme, the average height of the activation free energy barrier to local motions was found to be increased by 0.54 kcal.mol(-1) in the immobilized dihydrofolate reductase, a value that is of the same order as expected from the theoretical rate equation.  相似文献   

2.
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.  相似文献   

3.
To explore macromolecular dynamics on the picosecond timescale, we used neutron spectroscopy. First, molecular dynamics were analyzed for the hyperthermophile malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, the lactate dehydrogenase from Oryctolagus cunniculus muscle. Hyperthermophiles have elaborate molecular mechanisms of adaptation to extremely high temperature. Using a novel elastic neutron scattering approach that provides independent measurements of the global flexibility and of the structural resilience (rigidity), we have demonstrated that macromolecular dynamics represents one of these molecular mechanisms of thermoadaptation. The flexibilities were found to be similar for both enzymes at their optimal activity temperature and the resilience is higher for the hyperthermophilic protein. Secondly, macromolecular motions were examined in a native and immobilized dihydrofolate reductase (DHFR) from Escherichia coli. The immobilized mesophilic enzyme has increased stability and decreased activity, so that its properties are changed to resemble those of the thermophilic enzyme. Are these changes reflected in dynamical behavior? For this study, we performed quasielastic neutron scattering measurements to probe the protein motions. The residence time is 7.95 ps for the native DHFR and 20.36 ps for the immobilized DHFR. The average height of the potential barrier to local motions is therefore increased in the immobilized DHFR, with a difference in activation energy equal to 0.54 kcal/mol, which is, using the theoretical rate equation, of the same order than expected from calculation.  相似文献   

4.
The MJ0490 gene, one of the only two genes of Methanococcus jannaschii showing sequence similarity to the lactate/malate family of dehydrogenases, was classified initially as coding for a putative l-lactate dehydrogenase (LDH). It has been re-classified as a malate dehydrogenase (MDH) gene, because it shows significant sequence similarity to MT0188, MDH II from Methanobacterium thermoautotrophicum strain DeltaH. The three-dimensional structure of its gene product has been determined in two crystal forms: a "dimeric" structure in the orthorhombic crystal at 1.9 A resolution and a "tetrameric" structure in the tetragonal crystal at 2.8 A. These structures share a similar subunit fold with other LDHs and MDHs. The tetrameric structure resembles typical tetrameric LDHs. The dimeric structure is equivalent to the P-dimer of tetrameric LDHs, unlike dimeric MDHs, which correspond to the Q-dimer. The structure reveals that the cofactor NADP(H) is bound at the active site, despite the fact that it was not intentionally added during protein purification and crystallization. The preference of NADP(H) over NAD(H) has been supported by activity assays. The cofactor preference is explained by the presence of a glycine residue in the cofactor binding pocket (Gly33), which replaces a conserved aspartate (or glutamate) residue in other NAD-dependent LDHs or MDHs. Preference for NADP(H) is contributed by hydrogen bonds between the oxygen atoms of the monophosphate group and the ribose sugar of adenosine in NADP(H) and the side-chains of Ser9, Arg34, His36, and Ser37. The MDH activity of MJ0490 is made possible by Arg86, which is conserved in MDHs but not in LDHs. The enzymatic assay showed that the MJ0490 protein possesses the fructose-1,6-bisphosphate-activated LDH activity (reduction). Thus the MJ0490 gene product appears to be a novel member of the lactate/malate dehydrogenase family, displaying an LDH scaffold and exhibiting a relaxed substrate and cofactor specificities in NADP(H) and NAD(H)-dependent malate and lactate dehydrogenase reactions.  相似文献   

5.
Malate dehydrogenase: a model for structure, evolution, and catalysis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid sequence identity. The coenzyme specificity of malate dehydrogenase may be modulated by substitution of a single residue, as can the substrate specificity. The mechanism of catalysis of malate dehydrogenase is similar to that of lactate dehydrogenase, an enzyme with which it shares a similar 3-dimensional structure. Substitution of a single amino acid residue of a lactate dehydrogenase changes the enzyme specificity to that of a malate dehydrogenase, but a similar substitution in a malate dehydrogenase resulted in relaxation of the high degree of specificity for oxaloacetate. Knowledge of the 3-dimensional structures of malate and lactate dehydrogenases allows the redesign of enzymes by rational rather than random mutation and may have important commercial implications.  相似文献   

6.
Low concentrations (less than 0.2% w/v) of phenoxyethanol stimulated both the rate of respiration and total oxygen uptakes of Escherichia coli NCTC 5933 suspensions with glucose and other substrates, whilst higher concentrations (0.2--0.6% w/v) although still below those showing significant bactericidal activity, produced progressive levels of inhibition. The degree of respiratory inhibition varied with different substrates in the order malate less than succinate less than pyruvate less than or equal to glucose less than lactate, and suggested appreciable inhibition at a point after malate in the tricarboxylic acid cycle. This suggestion was supported by the use of tetrazolium salts as alternative electron acceptors, and by cytochrome difference spectra, which together implicated malate dehydrogenase as the most likely site of action. Isolated dehydrogenase enzymes of the tricarboxylic acid cycle in cell-free preparations were unaffected by high concentrations of phenoxyethanol (0.8% w/v) with the exception of malate dehydrogenase which was inhibited in extracts to extents similar to those of malate oxidation by intact bacteria. Lineweaver-Burke plots for malate dehydrogenase activity in the presence of phenoxyethanol suggested a competitive inhibition of the oxaloacetic acid-limited reaction and a non-competitive inhibition of the NADH-limited reaction. Accordingly, Ki values were found to be low when the rate of reaction was limited by oxaloacetic acid concentration yet relatively high when NADH was rate limiting.  相似文献   

7.
Based on the presence and absence of enzyme activities, the biochemical pathways for the fermentation of inulin by Clostridium thermosuccinogenes DSM 5809 are proposed. Activities of nine enzymes (lactate dehydrogenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, fumarase, fumarate reductase, phosphotransacetylase, acetate kinase, pyruvate kinase, and alcohol dehydrogenase) were measured at four temperatures (37, 47, 58, and 70 degrees C). Each of the enzymes increased 1.5 to 2.0-fold in activity between 37 and 58 degrees C, but only lactate dehydrogenase, fumarate reductase, malate dehydrogenase, and fumarase increased at a similar rate between 58 and 70 degrees C. No acetate kinase activity was observed at 70 degrees C. Arrhenius energies were calculated for each of these nine enzymes and were in the range of 9.8 to 25.6 kcal/mol. To determine if a relationship existed between product formation and enzyme activity, serum bottle fermentations were completed at the four temperatures. Maximum yields (in moles per mole hexose unit) for succinate (0.23) and acetate (0.79) and for biomass (29.5 g/mol hexose unit) occurred at 58 degrees C, whereas the maximum yields for lactate (0.19) and hydrogen (0.25) and the lowest yields for acetate (0.03) and biomass (19.2 g/mol hexose unit) were observed at 70 degrees C. The ratio of oxidized products to reduced products changed significantly, from 0.52 to 0.65, with an increase in temperature from 58 to 70 degrees C, and there was an unexplained detection of increased reduced products (ethanol, lactate, and hydrogen) with a concomitant decrease in oxidized-product formation at the higher temperature.  相似文献   

8.
Studies have been made on the activity and properties of malate and lactate dehydrogenases from the cattle rumen trematodes Eurytrema pancreaticum, Calicophoron ijimai and the turbellarian Phagocata sibirica which has a common free-living ancestor with the trematodes. All the species studied have a highly active malate dehydrogenase, its activity in the reaction of reducing oxaloacetate being 6-14 times higher than in the reaction of malate oxidation. The affinity of malate dehydrogenase to oxaloacetate was found to be higher than that to malate. The activity of lactate dehydrogenase (reducing the pyruvate) was lower than the activity of malate dehydrogenase, the difference being 50 times for C. ijimai, 4 times for E. pancreaticum and 10 times for P. sibirica.  相似文献   

9.
Maria Luisa Sagrist  Jorge Bozal 《Biochimie》1987,69(11-12):1207-1215
Chicken liver microsomal fractions show lactate and malate dehydrogenase activities which behave differently with respect to successive extractions by sonication in 0.15 M NaCl, 0.2% Triton X-100 and 0.15 M NaCl, respectively. The Triton X-100-treated pellet did not show malate dehydrogenase activity but exhibited a 10-fold increase in lactate dehydrogenase activity with respect to the sonicated pellet. Total extracted lactate and malate dehydrogenase activities were, respectively, 7.5 and 1.7 times higher than that in the initial pellet. Different isoenzyme compositions were observed for cytosoluble and microsomal extracted lactate and malate dehydrogenases. When the ionic strength (0-500 mM) or the pH values (6.1-8.7) of the media were increased, an efficient release of lactate dehydrogenase was found at NaCl 30-70 mM and pH 6.6-7.3. Malate dehydrogenase solubilization under the same conditions was very small, even at NaCl 500 mM, but it attained a maximum in the 7.3-8.7 pH range. Cytosoluble lactate dehydrogenase bound in vitro to 0.15 M NaCl-treated (M2) and sonicated (M3) microsomal fractions but not to the crude microsomal fraction (M1). Particle saturation by lactate dehydrogenase occurred with M2 and M3, which contained binding sites with different affinities. Cytosoluble malate dehydrogenase did not bind to M1, M2 and M3 fractions, however, a little binding was found when purified basic malate dehydrogenase was incubated with M2 or M3 fractions.  相似文献   

10.
Bottoms CA  White TA  Tanner JJ 《Proteins》2006,64(2):404-421
Protein-bound water molecules are important components of protein structure, and therefore, protein function and energetics. Although structural conservation of solvent has been studied in a few protein families, a lack of suitable computational tools has hindered more comprehensive analyses. Herein we present a semiautomated computational approach for identifying solvent sites that are conserved among proteins sharing a common three-dimensional structure. This method is tested on six protein families: (1) monodomain cytochrome c, (2) fatty-acid binding protein, (3) lactate/malate dehydrogenase, (4) parvalbumin, (5) phospholipase A2, and (6) serine protease. For each family, the method successfully identified previously known conserved solvent sites. Moreover, the method discovered 22 novel conserved solvent sites, some of which have higher degrees of conservation than the previously known sites. All six families studied had solvent sites with more than 90% conservation and these sites were invariably located in regions of the protein with very high sequence conservation. These results suggest that highly conserved solvent sites, by virtue of their proximity to conserved residues, should be considered as one of the defining three-dimensional structural characteristics of protein families and folds.  相似文献   

11.
The specific activities of the malate dehydrogenase and lactate dehydrogenase present in the soluble fraction of several guinea-pig tissues are reported. The electrophoretic patterns showed always two forms (A and B) with malate dehydrogenase activity and the five isoenzymes of lactate dehydrogenase. Chromatography of the different soluble fractions through 5' AMP-Sepharose allowed both molecular forms of malate dehydrogenase to be separated and obtained free from lactate dehydrogenase. Comparative studies of the two forms of malate dehydrogenase evidenced that the A and B forms exhibited cytosolic and mitochondrial characteristics, respectively.  相似文献   

12.
Radestock S  Gohlke H 《Proteins》2011,79(4):1089-1108
We probe the hypothesis of corresponding states, according to which homologues from mesophilic and thermophilic organisms are in corresponding states of similar rigidity and flexibility at their respective optimal temperatures. For this, the local distribution of flexible and rigid regions in 19 pairs of homologous proteins from meso- and thermophilic organisms is analyzed and related to activity characteristics of the enzymes by constraint network analysis (CNA). Two pairs of enzymes are considered in more detail: 3-isopropylmalate dehydrogenase and thermolysin-like protease. By comparing microscopic stability features of homologues with the help of stability maps, introduced for the first time, we show that adaptive mutations in enzymes from thermophilic organisms maintain the balance between overall rigidity, important for thermostability, and local flexibility, important for activity, at the appropriate working temperature. Thermophilic adaptation in general leads to an increase of structural rigidity but conserves the distribution of functionally important flexible regions between homologues. This finding provides direct evidence for the hypothesis of corresponding states. CNA thereby implicitly captures and unifies many different mechanisms that contribute to increased thermostability and to activity at high temperatures. This allows to qualitatively relate changes in the flexibility of active site regions, induced either by a temperature change or by the introduction of mutations, to experimentally observed losses of the enzyme function. As for applications, the results demonstrate that exploiting the principle of corresponding states not only allows for successful thermostability optimization but also for guiding experiments in order to improve enzyme activity in protein engineering.  相似文献   

13.
A correlation is shown to exist between malate dehydrogenase (MDH), lactate dehydrogenase (LDH) and glycerol-3-phosphate dehydrogenase (glycerol-3-PDH activity values, lactate/pyruvate and malate/oxaloacetate coefficients, MDH and LDH isozyme spectra and kinetic properties of LDH isozymes in soluble fractions of cytoplasm from intact rabbit m. soleus (red), m. gastrocnemius (mixed) and m. quadratus lumborum (white). In denervated soleus and gastrocnemius the cytoplasmic MDH/LDH, mitochondrial MDH/LDH, MDH mitochondrial/MDH cytoplasmic activity ratios, concentrations of substrates and isozyme spectra of MDH and LDH tend to equalize. The obtained results indicate the importance of isozyme composition and total activity ratios of the dehydrogenases for regulation of pyruvate and NADH metabolic pathways.  相似文献   

14.
Myocardium and skeletal muscle of white rats have a number of specific features in metabolism of carbohydrates. The skeletal muscle is characterized by high intensity of glycolytic processes and glycolytic substrate phosphorylation, that is testified to by the activity of the terminal glycolysis stage enzymes (pyruvate kinase, lactate dehydrogenase, its isoenzyme spectrum) and by the content of lactate and pyruvate metabolites. In contrast to skeletal muscles, the activity of NAD-dependent malate dehydrogenase in the myocardium is significant both in cytoplasm and in mitochondria. This activity corresponds to a high level of malate and oxaloacetate metabolites and to the activity of NADP-dependent malate dehydrogenase, playing a connective role between glycolysis, the cycle of tricarboxylic acids and glyconeogenesis. Phosphoenolpyruvate carboxykinase, catalyzing the transformation of cytoplasmatic oxaloacetate into phosphoenolpyruvate is more active in the skeletal muscles where the intensity of the tricarboxylic acids cycle reactions is lower and the activity of glycolysis is higher than that of myocardium.  相似文献   

15.
The effect of chronic treatment (8 months) with diphenylhydantoin (DPH) on rat brain was studied. The activity of some enzymes related to energy transduction (lactate dehydrogenase, citrate synthase, and malate dehydrogenase; NADH-cytochromec reductase and cytochrome oxidase) and neurotransmission (acetylcholine esterase) was evaluated both in the whole brain homogenate and/or in the crude mitochondrial fraction. A clear-cut decrease of acetylcholine esterase activity was observed, the decrease continuing even after treatment was discontinued. Effects on energy metabolism and on lactate dehydrogenase, malate dehydrogenase, and cytochrome oxidase are discussed.  相似文献   

16.
Plasmodium falciparum trophozoites, isolated by mechanical rupture of infected human erythrocytes, were analyzed for purity by determination of the specific activities of a number of marker enzymes selected for high activity, stability, and convenience of assay procedures. The specific activities of the soluble enzymes lactate dehydrogenase and malate dehydrogenase were much higher in the parasite than in the erythrocyte. The soluble enzyme glutamate dehydrogenase (NADP+) was specific for the parasite. Samples of 100,000 g supernate obtained from parasites that appeared to be free from contaminating erythrocytes consistently showed specific activities of about 4, 3 and 0.1 mumole/min/mg for lactate dehydrogenase, malate dehydrogenase and glutamate dehydrogenase, respectively. Moreover, preparations of parasites that exhibit these specific activities showed low acetylcholine esterase activity in the membrane fractions. The specific activities of these soluble marker enzymes did not appear to be strain dependent. A preparation of highly purified trophozoites obtained by free flow electrophoresis and analyzed for purity by electron microscopy exhibited the same specific activities for these marker enzymes. The use of specific activities of selected marker enzymes should be very useful for determining the purity of preparation of parasites when used in conjunction with other methods.  相似文献   

17.
Based on the presence and absence of enzyme activities, the biochemical pathways for the fermentation of inulin by Clostridium thermosuccinogenes DSM 5809 are proposed. Activities of nine enzymes (lactate dehydrogenase, phosphoenolpyruvate carboxylase, malate dehydrogenase, fumarase, fumarate reductase, phosphotransacetylase, acetate kinase, pyruvate kinase, and alcohol dehydrogenase) were measured at four temperatures (37, 47, 58, and 70°C). Each of the enzymes increased 1.5 to 2.0-fold in activity between 37 and 58°C, but only lactate dehydrogenase, fumarate reductase, malate dehydrogenase, and fumarase increased at a similar rate between 58 and 70°C. No acetate kinase activity was observed at 70°C. Arrhenius energies were calculated for each of these nine enzymes and were in the range of 9.8 to 25.6 kcal/mol. To determine if a relationship existed between product formation and enzyme activity, serum bottle fermentations were completed at the four temperatures. Maximum yields (in moles per mole hexose unit) for succinate (0.23) and acetate (0.79) and for biomass (29.5 g/mol hexose unit) occurred at 58°C, whereas the maximum yields for lactate (0.19) and hydrogen (0.25) and the lowest yields for acetate (0.03) and biomass (19.2 g/mol hexose unit) were observed at 70°C. The ratio of oxidized products to reduced products changed significantly, from 0.52 to 0.65, with an increase in temperature from 58 to 70°C, and there was an unexplained detection of increased reduced products (ethanol, lactate, and hydrogen) with a concomitant decrease in oxidized-product formation at the higher temperature.  相似文献   

18.
Metabolism of lactate as a carbon source by Pseudomonas citronellolis occurred via a nicotinamide adenine dinucleotide (NAD)-independent L-lactate dehydrogenase, which was present in cells grown on DL-lactate but was not present in cells grown on acetate, aspartate, citrate, glucose, glutamate, or malate. The cells also possessed a constitutive, NAD-independent malate dehydrogenase instead of the conventional NAD-dependent malate dehydrogenase instead of the conventional NAD-dependent enzyme in the tricarboxylic acid cycle. Both enzymes were particulate and used dichlorophenolindo-phenol or oxygen as an electron acceptor. In acetate-grown cells, the activity of pyruvate dehydrogenase and NAD phosphate-linked malate enzyme decreased, cells grown on glucose or lactate. This was consistent with the need to maintain a supply of oxalacetate for metabolism of acetate via the tricarboxylic acid cycle. Changes in enzyme activities suggest that gluconeogenesis from noncarbohydrate carbon sources occurs via the malate enzyme (when oxalacetate decarboxylase is inhibited) or a combination of the NAD-independent malate dehydrogenase and oxalacetate decarboxylase.  相似文献   

19.
Zheng N  Xu J  Wu Z  Chen J  Hu X  Song L  Yang G  Ji C  Chen S  Gu S  Ying K  Yu X 《Experimental parasitology》2005,109(4):220-227
The NAD-dependent cytosolic malate dehydrogenase (cMDH, EC 1.1.1.37) plays a pivotal role in the malate-aspartate shuttle pathway that operates in a metabolic coordination between cytosol and mitochondria, and thus is crucial for the survival and pathogenicity of the parasite. In the high throughput sequencing of the cDNA library constructed from the adult stage of Clonorchis sinensis, a cDNA clone containing 1152bp insert was identified to encode a putative peptide of 329 amino acids possessing more than 50% amino acid sequence identities with the cMDHs from other organisms such as fish, plant, and mammal. But low sequence similarities have been found between this cMDH and mitochondrial malate dehydrogenase as well as glyoxysomal malate dehydrogenase from other organisms. Northern blot analysis showed the size of the C. sinensis cMDH mRNA was 1.2 kb. The cMDH was expressed in Escherichia coli M15 as a His-tag fusion protein and purified by BD TALON metal affinity column. The recombinant cMDH showed high MDH activity of 241 U mg(-1), without lactate dehydrogenase and NADP(H) selectivity. It provides a model for the structure, function analysis, and drug screening on cMDH.  相似文献   

20.
The mitochondrial tricarboxylic acid cycle enzyme malate dehydrogenase was purified from Saccharomyces cerevisiae, and an antibody to the purified enzyme was obtained in rabbits. Immunoscreening of a yeast genomic DNA library cloned into a lambda gt11 expression vector with anti-malate dehydrogenase immunoglobulin G resulted in identification of a lambda recombinant encoding an immunoreactive beta-galactosidase fusion protein. The yeast DNA portion of the coding region for the fusion protein translates into an amino acid sequence which is very similar to carboxy-terminal sequences of malate dehydrogenases from other organisms. In s. cerevisiae transformed with a multicopy plasmid carrying the complete malate dehydrogenase gene, the specific activity and immunoreactivity of the mitochondrial isozyme are increased by eightfold. Expression of both the chromosomal and plasmid-borne genes is repressed by growth on glucose. Disruption of the chromosomal malate dehydrogenase gene in haploid S. cerevisiae produces mutants unable to grow on acetate and impaired in growth on glycerol plus lactate as carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号