首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor-mediated cytotoxicity involves ADP-ribosylation   总被引:9,自引:0,他引:9  
The mechanism of TNF-mediated cytotoxicity was studied in several cell lines, including L929 murine fibroblasts. TNF caused a time- and dose-dependent increase of ADP-ribosylation in L929 target cells parallel to cell death. During the course of TNF-mediated cytotoxicity in the presence of actinomycin D, an increase in ADP-ribosylation became apparent between 4 and 6 h after exposure to TNF. Intracellular NAD+ and ATP levels decreased parallel to but not preceding cell death. Two inhibitors of ADP-ribosylation, namely 3-aminobenzamide and nicotinamide, prevented TNF-mediated cytotoxicity. Another target, the human cervical carcinoma cell line ME-180, showed an increase in ADP-ribosylation when treated with TNF, and the cytotoxic action of TNF on this target cell was inhibited by these two inhibitors. In the absence of actinomycin D, treatment of L929 cells with TNF also increased ADP-ribosylation, and the cytotoxic action of TNF was inhibited by nicotinamide. These results indicate that ADP-ribosylation may be involved in the TNF-mediated cytotoxic reaction.  相似文献   

2.
The two competitive inhibitors of ADP-ribosylation, nicotinamide and 3-aminobenzamide, have been reported to interfere with TNF-induced cell apoptosis, and there is evidence that they inhibit killer-induced target cell lysis as well. There are very few drugs known to specifically interfere with target apoptosis induced by killer cells. We therefore sought to explore the effects these inhibitors have on CTL-mediated cell lysis. Here we show that TcR-mediated transmembrane signaling in CTL, measured by Ca2+ mobilization and generation of inositol phosphates, is inhibited by nicotinamide. The possibility that all cell functions are suppressed by the drug is excluded by the finding that constitutive secretion of BLT serine esterase is not inhibited, whereas stimulated secretion of this enzyme is suppressed. We also show that nicotinamide does not interfere with CTL target cell binding or reorientation of the Golgi apparatus toward the target binding site. It is concluded that nicotinamide inhibits transmembrane signaling in CTL and thereby interferes with delivery of the lethal hit to targets.  相似文献   

3.
To analyze a possible involvement of ADP-ribosylation reactions in 3T3-L1 pre-adipocyte differentiation. ADP-ribosyltransferase activities is permeabilized cells as well as endogenous amounts of protein-bound mono- and poly(ADP-ribose) residues were determined. Also, in vivo labeling with [3H]adenosine of ADP-ribose residues linked to high-mobility-group (HMG) proteins was performed. As an additional probe, the effects of ADP-ribosylation inhibitors and non-inhibitory analogs were studied. Basal and total poly(ADP-ribose) polymerase activities markedly increased prior to the appearance of the differentiation marker glycerol-3-phosphate dehydrogenase. Despite these apparent changes in activity, however, neither protein-bound poly(ADP-ribose) residue nor mono(ADP-ribosyl) groups in histones, nor the NAD content, changed significantly under these conditions. Furthermore, although HMG protein-associated [3H]ADP-ribose was reduced in differentiating [3H]adenosine-labeled cells, the data suggest altered precursor pool labeling rather than a specific decrease in ADP-ribosylated HMG proteins. Non-participation of ADP-ribosylation reactions in 3T3-L1 differentiation is further supported by experiments with inhibitors and non-inhibitory analogs. Benzamide at 0.3-3 mM per se without effect on differentiation, was able to induce specific gene expression when combined with insulin (10(-12)-10(-7) M). Similar effects were seen with benzoate as well as with nicotinamide, 3-aminobenzamide and their corresponding acids. The data indicate that benzamide and analogs have profound effects on chromatin functions that are not mediated by ADP-ribosylation reactions.  相似文献   

4.
When C6 glioma cells were stimulated by β -adrenergic ligands, [3H]-deoxyglucose uptake by the cells decreased in the first 30 min, followed by its acceleration. The stimulation of deoxyglucose uptake was attributable to desensitization of β-adrenergic receptor-adenylate cyclase system. When the cells were treated with quinacrine or tetracaine, phospholipase inhibitors, the stimulation of deoxyglucose uptake by isoproterenol was diminished without changing the basal rate. On the other hand, when C6 glioma cells were treated with melittin or phorbol ester, phospholipase A2 activators, the deoxyglucose uptake increases even in the absence of isoproterenol. Since these compounds inhibit or enhance phospholipase A2 as well as the desensitization of β -adrenergic receptors (Proc. Natl. Acad. Sci. USA 77, 1341–1345, 1980), these results suggest that turnovers of phospholipids in the vicinity of β -adrenergic receptors modify the glucose uptake of C6 glioma cells.  相似文献   

5.
The ability of rat liver submitochondrial particles to catalyze NAD+ hydrolysis with a transfer of ADP-ribose residues to protein membranes has been demonstrated ADP-ribosylation is directly dependent on NAD+ concentration upon saturation with 1 mM NAD+ and is inhibited by physiological compounds (e.g., ATP, 10 mM; nicotinamide, 10 mM); besides, it is an artificial acceptor of ADP-ribose, arginine methyl ester. It was found that ADP-ribose is accepted by inner mitochondrial membrane protein, whose molecular masses amount to 25-30 kDa. The fact that 5'-AMP is a product of ADP-ribose degradation by snake venom phosphodiesterase suggests that the inner membrane vesiculate proteins are modified by mono(ADP-ribose). Covalent modification of membrane proteins by ADP-ribose leads to citrate transport inhibition in inner membrane vesicles the [14C]citrate uptake is significantly decreased thereby. The ability of ADP-ribosylation inhibitors to restore the citrate transport rate is suggestive of a direct regulatory effect of NAD+-dependent ADP-ribosylation on the activity of citrate-translocating system of inner mitochondrial membranes.  相似文献   

6.
The influence of ACTH and some of its N-terminal related peptides was investigated on the uptake of (3H)-2-deoxy-D-glucose in pure cultures of neurons from chick embryo cerebral hemispheres. ACTH influences deoxyglucose uptake in a time and dose-dependent fashion. The stimulation of deoxyglucose uptake is observed after a delay of 6-8 h and requires active protein synthesis. ACTH does not affect deoxyglucose in non-neuronal cells (astroglial cells, hepatocytes, myoblasts, fibroblasts). The effect of various peptide hormones, neuropeptides and growth factors, active in the central nervous system or other tissues, has also been examined. None of these were able to stimulate deoxyglucose uptake, suggesting that the regulation of hexose uptake in neurons is specific for the ACTH-related peptides.  相似文献   

7.
In order to analyze the fluctuation of the poly ADP-ribosylation level during the cell cycle of synchronously growing He La S3 cells, we have developed three different assay systems; intact and disrupted nuclear systems, and poly(ADP-ribose) polymerase in vitro system. The optimum conditions for poly ADP-ribosylation in each assay system were similar except the pH optimum. Under the conditions favoring poly ADP-ribosylation, little radioactivity incorporated into poly(ADP-ribose) was lost after termination of the poly ADP-ribosylation by addition of nicotinamide which inhibits the reactions by more than 90% in any system. In the intact nuclear system, the level of poly ADP-ribosylation increased slightly subsequent to late G2 phase with a peak at M phase. The high level of poly ADP-ribosylation in M phase was also confirmed by using selectively collected mitotic cells which were arrested in M phase by Colcemid. The level in mitotic chromosomes was 5.1-fold higher than that in the nuclei from logarithmically growing cells. Colcemid has no effect on the poly ADP-ribosylation. In the disrupted nuclear system, a relatively high level of poly ADP-ribosylation was observed during mid S-G2 phase. When poly(ADP-ribose) polymerase was extracted from the nuclei with a buffer solution containing 0.3 M KCl, more than 90% of the enzyme activity was recovered. The poly(ADP-ribose) polymerase in vitro system was dependent on both DNA and histone—10 μg each. In the enzyme system, enzyme activity was detected throughout the cell cycle and was observed to be highest in G2 phase. The high level at M phase observed in the intact nuclear system was not seen in the other two systems. Under the assay conditions, little influence of poly(ADP-ribose) degrading enzymes was noted on the level of poly ADP-ribosylation in any of the three systems. This was confirmed at various stages during the cell cycle through pulse-labeling and “chasing” by adding nicotinamide.  相似文献   

8.
The uptake of deoxyglucose was compared in BHK cells and in DMN4B cells, a conditionally transformed line of BHK cells which exhibits transformed behavior at 38.5° but not at 32°. At 32°, DMN4B cells took up deoxyglucose more slowly than BHK cells, reflecting a higher Km for uptake of this sugar. When both cell lines were grown at 38.5°, the Km for DMN4B cells was reduced to a level only slightly greater than for BHK cells, and deoxyglucose uptake became similar in the two cell lines. Growth in glucose-free medium for 22 hours stimulated deoxyglucose uptake in both BHK and DMN4B cells; under these conditions, uptake was equal in the two cells lines, both at 32° and 38.5°. Glycolysis, as measured by lactic acid production, was slower in DMN4B than BHK cells, but in contrast to deoxyglucose uptake, this difference was observed at 38.5° rather than 32°. The observation that the subnormal deoxyglucose uptake of DMN4B cells in the untransformed state (32°) can be normalized by growth at 38.5°, a temperature permissive for transformation, suggests that membrane changes facilitating sugar uptake, which have been found in other transformed cells, are associated with transformation in DMN4B cells as well. However, the failure of uptake to exceed normal in these cells indicates that their transformed behavior is not attributable to excessive sugar uptake per se.  相似文献   

9.
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-D-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

10.
《Chronobiology international》2013,30(4-5):521-538
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-d-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

11.
Addition of 5 to 250 micromolar adenosine to the culture medium resulted in a 30–80% inhibition of the rate of uptake of 2-deoxyglucose or 3–0-methylglucose by sparse or confluent 3T3 cells within three hours. The inhibition of deoxyglucose uptake could be reversed partially by changing the cells to medium without adenosine for two hours and could be prevented completely by the addition of persantin, an inhibitor of nucleoside uptake. The adenosine effect is not due to inhibition of pyrimidine synthesis, since it is not prevented by uridine. It is not seen in 3T6 cells lacking adenosine kinase. The inhibition could be observed on confluent cells whose deoxyglucose uptake was stimulated by insulin, epidermal growth factor (EGF), calf serum or calcium phosphate. Although the percentage stimulation over control by these factors varied, the percentage inhibition by addition of adenosine of the stimulated rates, as well as the unstimulated rate, was relatively constant. EGF, insulin and calcium phosphate caused little or no stimulation of deoxyglucose uptake by sparse cells, whether adenosine treated or untreated. The results suggest that adenosine acts intracellularly after phosphorylation to regulate sugar uptake through a mechanism which is independent of the regulation by hormones and cell density.  相似文献   

12.
Heath RL 《Plant physiology》1979,64(2):224-227
It was found that the transport system for glucose (as measured by deoxyglucose uptake) in the high temperature strain of Chlorella (strain 07-11-05 or C. sorokiniana) was constitutive and the rate of uptake did not increase upon incubation of autotrophically grown cells with either deoxyglucose or glucose. The uptake obeyed Michaelis-Menten type kinetics with a concentration of 200 micromolar for half-saturation. The maximum rate of uptake was nearly 10 times faster per cell (at 38 C) than that reported for any other Chlorella. This rapid accumulation of deoxyglucose causes the passive efflux to become significant compared to the pump-driven influx and nonlinear uptake appears even after only 3 to 4 minutes.  相似文献   

13.
Treatment of rat basophilic leukemia cell line (2H3) with interferon-alpha significantly increased intracellular histamine levels. On the other hand, the histidine content was decreased reciprocally by interferon in a dose-dependent manner. Concomitantly, the activity of histidine decarboxylase, the enzyme responsible for histamine synthesis, was augmented. The increase in histidine decarboxylase activity was partially abolished in co-incubation with inhibitors of ADP-ribosyltransferase, such as 3-aminobenzamide or nicotinamide. These results suggest the pivotal role of activation of histidine decarboxylase, presumably through ADP-ribosylation of the enzyme, in interferon-induced histamine synthesis.  相似文献   

14.
Pretreatment of rho protein purified from pig brain cytosol with EDTA (3 mM) for 10 min at 30 degrees C inhibited its ADP-ribosylation by Clostridium botulinum C3 ADP-ribosyltransferase by more than 90%. The EDTA effect was not caused by alteration of C3. GDP or GDP beta S present during the pretreatment period completely prevented the decrease in ADP-ribosylation with half-maximal and maximal effects at 3 and 300 microM, respectively. GTP or GTP gamma S were less efficacious in preventing the decrease in ADP-ribosylation, but were more potent (half-maximal and maximal effects at 0.1 and 3 microM, respectively). [32P]ADP-ribose incorporated in pig brain rho by C3 was de-ADP-ribosylated by the enzyme in the presence of nicotinamide and at low pH. Concomitantly, [32P]NAD was formed. The pH optima for ADP-ribosylation and de-ADP-ribosylation were pH 7.5 and 5.5, respectively. De-ADP-ribosylation was most efficient with nicotinamide, less effective with 3-acetylpyridine and not observed with 3-aminopyridine, 4-aminopyridine, 4-acetylpyridine and isonicotinic acid. As observed for the ADP-ribosylation, the de-ADP-ribosylation by C3 was maximal with the GDP-bound form of rho and blocked after EDTA treatment.  相似文献   

15.
Adsorption of Sendai virus to HeLa cells induced in them an increased permeability to K+, Na+, Ca++, deoxyglucose, but not to fluorescein. The stimulation of uptake of 42K was temperature-dependent, did not occur below 15 degrees C, and was not inhibited by ouabain. The virus-induced increase in the uptake and release of 42K and of 3H deoxyglucose could not be mimicked by treatment of cells with linoleic acid, a procedure which increased the fluidity of the cellular membranes. The stimulatory effect of 0.5 mM ATP on the release of deoxyglucose was enhanced several fold in the presence of Sendai virus. These results seem to indicate the possible involvement of membranal enzymes such as e.g. protein kinase in the permeability changes induced by Sendai virus.  相似文献   

16.
Four human ovarian and breast tumor lines expressing the HER2/neu oncogene were resistant to the cytotoxic and DNA-degradative activity of TNF. The resistance was not associated with altered TNF receptor function because Scatchard analysis of 125I-rTNF binding to HER2/neu-expressing target cells revealed receptors with normal binding parameters. Furthermore, the TNF receptors on the resistant lines were capable of signal transduction as evidence by the induction of ADP-ribose polymerase activity and MHC expression. TNF resistance was not reversed by coincubation with drugs that interrupted the glutathione redox cycle. In addition, although coincubation of HER2/neu-expressing targets with cycloheximide resulted in significant TNF-induced lysis, when compared to HER2/neu-nonexpressing targets similarly treated with cycloheximide, a significant relative resistance was still present. To investigate the role of ADP-ribosylation in the resistance of these targets, we used nontoxic concentrations of two inhibitors of ADP-ribose polymerase, 3-aminobenzamide, and nicotinamide. Both inhibitors completely reversed the resistance of HER2/neu-expressing targets to TNF-mediated cytotoxicity and DNA injury in a concentration-dependent fashion. These inhibitors of ADP-ribose polymerase did not act by down-regulating expression of HER2/neu oncogenes. In contrast, aminobenzamide and nicotinamide significantly diminished TNF-induced cytotoxicity of L929 targets. These data suggest that the activity of ADP-ribose polymerase may play a pivotal role in determining the fate of the target cell during exposure to TNF.  相似文献   

17.
Certain microbial toxins are ADP-ribosyltransferases, acting on specific substrate proteins. Although these toxins have been of great utility in studies of cellular regulatory processes, a simple procedure to directly study toxin-catalyzed ADP-ribosylation in intact cells has not been described. Our approach was to use [2-3H]adenine to metabolically label the cellular NAD+ pool. Labeled proteins were then denatured with SDS, resolved by PAGE, and detected by flurography. In this manner, we show that pertussis toxin, after a dose-dependent lag period, [3H]-labeled a 40-kD protein intact cells. Furthermore, incubation of the gel with trichloroacetic acid at 95 degrees C before fluorography caused the release of label from bands other than the pertussis toxin substrate, thus, allowing its selective visualization. The modification of the 40-kD protein was ascribed to ADP-ribosylation of a cysteine residue on the basis of inhibition of labeling by nicotinamide and the release of [3H]ADP-ribose from the labeled protein by mercuric acetate. Cholera toxin catalyzed the [3H]-labeling of a 46-kD protein in the [2-3H]adenine-labeled cells. Pretreatment of the cells with pertussis toxin before the labeling of NAD+ with [2-3H]adenine blocked [2-3H]ADP-ribosylation catalyzed by pertussis toxin, but not that by cholera toxin. Thus, labeling with [2-3H]adenine permits the study of toxin-catalyzed ADP-ribosylation in intact cells. Pasteurella multocida toxin has recently been described as a novel and potent mitogen for Swiss 3T3 cell and acts to stimulate the phospholipase C-mediated hydrolysis of polyphosphoinositides. The basis of the action of the toxin is not known. Using the methodology described here, P. multocida toxin was not found to act by ADP-ribosylation.  相似文献   

18.
Pretreatment of cultured bovine adrenal chromaffin cells with pertussis toxin facilitated nicotine-induced catecholamine release. This facilitation was correlated with the ability of the toxin to catalyze the ADP-ribosylation of an approximately 40-kDa membrane protein. The actions of the toxin were reversed by isonicotinamide, an inhibitor of ADP-ribosylation. Catecholamine release due to high K+ and muscarine was also enhanced by pertussis toxin. In all cases, 45Ca2+ uptake was unaltered in cells treated with the toxin. These results suggest that ADP-ribosylation of a 40-kDa membrane protein facilitates catecholamine release from bovine chromaffin cells without affecting 45Ca2+ uptake.  相似文献   

19.
Adriamycin caused significant interphase death in HL-60 cells during six hours of incubation, which was abolished by the poly(ADP-ribose) polymerase inhibitors, 3-aminobenzamide or nicotinamide. Neither agent changed adriamycin uptake by HL-60 cells. Although 3-aminobenzamide did not alter the number of DNA strand breaks caused by adriamycin, it prevented adriamycin-induced depletion of intracellular NAD+ and ATP, and maintained energy charge. These findings suggest that the activation of poly(ADP-ribose) synthesis plays an important role in the adriamycin-induced interphase death of proliferating HL-60 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号