共查询到20条相似文献,搜索用时 0 毫秒
1.
Viret C Lantz O He X Bendelac A Janeway CA 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(6):3004-3014
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development. 相似文献
2.
Ohteki T Maki C Koyasu S Mak TW Ohashi PS 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(7):3753-3756
Using mice deficient for LFA-1, CD44, and ICAM-1, we examined the role of these adhesion molecules in NK1.1+TCR alpha beta+ (NKT) cell development. Although no defect in NKT cell development was observed in CD44-/- and ICAM-1-/- mice, a dramatic reduction of liver NKT cells was observed in LFA-1-/- mice. Normal numbers of NKT cells were present in other lymphoid organs in LFA-1-/- mice. When LFA-1-/- splenocytes were injected i.v. into wild-type mice, the frequency of NKT cells among donor-derived cells in the recipient liver was normal. In contrast, when LFA-1-/- bone marrow (BM) cells were injected i.v. into irradiated wild-type mice, the frequency of liver NKT cells was significantly lower than that of mice injected with wild-type BM cells. Collectively, these data indicate that LFA-1 is required for the development of liver NKT cells, rather than the migration to and/or subsequent establishment of mature NKT cells in the liver. 相似文献
3.
Capone M Cantarella D Schümann J Naidenko OV Garavaglia C Beermann F Kronenberg M Dellabona P MacDonald HR Casorati G 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(5):2390-2398
A sizable fraction of T cells expressing the NK cell marker NK1.1 (NKT cells) bear a very conserved TCR, characterized by homologous invariant (inv.) TCR V alpha 24-J alpha Q and V alpha 14-J alpha 18 rearrangements in humans and mice, respectively, and are thus defined as inv. NKT cells. Because human inv. NKT cells recognize mouse CD1d in vitro, we wondered whether a human inv. V alpha 24 TCR could be selected in vivo by mouse ligands presented by CD1d, thereby supporting the development of inv. NKT cells in mice. Therefore, we generated transgenic (Tg) mice expressing the human inv. V alpha 24-J alpha Q TCR chain in all T cells. The expression of the human inv. V alpha 24 TCR in TCR C alpha(-/-) mice indeed rescues the development of inv. NKT cells, which home preferentially to the liver and respond to the CD1d-restricted ligand alpha-galactosylceramide (alpha-GalCer). However, unlike inv. NKT cells from non-Tg mice, the majority of NKT cells in V alpha 24 Tg mice display a double-negative phenotype, as well as a significant increase in TCR V beta 7 and a corresponding decrease in TCR V beta 8.2 use. Despite the forced expression of the human CD1d-restricted TCR in C alpha(-/-) mice, staining with mCD1d-alpha-GalCer tetramers reveals that the absolute numbers of peripheral CD1d-dependent T lymphocytes increase at most by 2-fold. This increase is accounted for mainly by an increased fraction of NK1.1(-) T cells that bind CD1d-alpha-GalCer tetramers. These findings indicate that human inv. V alpha 24 TCR supports the development of CD1d-dependent lymphocytes in mice, and argue for a tight homeostatic control on the total number of inv. NKT cells. Thus, human inv. V alpha 24 TCR-expressing mice are a valuable model to study different aspects of the inv. NKT cell subset. 相似文献
4.
Sköld M Faizunnessa NN Wang CR Cardell S 《Journal of immunology (Baltimore, Md. : 1950)》2000,165(1):168-174
The majority of T lymphocytes carrying the NK cell marker NK1.1 (NKT cells) depend on the CD1d molecule for their development and are distinguished by their potent capacity to rapidly secrete cytokines upon activation. A substantial fraction of NKT cells express a restricted TCR repertiore using an invariant TCR Valpha14-Jalpha281 rearrangement and a limited set of TCR Vbeta segments, implying recognition of a limited set of CD1d-associated ligands. A second group of CD1d-reactive T cells use diverse TCR potentially recognizing a larger diversity of ligands presented on CD1d. In TCR-transgenic mice carrying rearranged TCR genes from a CD1d-reactive T cell with the diverse type receptor (using Valpha3. 2/Vbeta9 rearrangements), the majority of T cells expressing the transgenic TCR had the typical phenotype of NKT cells. They expressed NK1.1, CD122, intermediate TCR levels, and markers indicating previous activation and were CD4/CD8 double negative or CD4+. Upon activation in vitro, the cells secreted large amounts of IL-4 and IFN-gamma, a characteristic of NKT cells. In mice lacking CD1d, TCR-transgenic cells with the NKT phenotype were absent. This demonstrates that a CD1d-reactive TCR of the "non-Valpha 14" diverse type can, in a ligand-dependent way, direct development of NK1.1+ T cells expressing expected functional and cell-surface phenotype characteristics. 相似文献
5.
C57BL/6 (B6) mice with targeted mutations of immune function genes were used to investigate the mechanism of recovery from experimental autoimmune encephalomyelitis (EAE). The acute phase of passive EAE in the B6 mouse is normally resolved by partial recovery followed by mild sporadic relapses. B6 TCR beta-chain knockout (KO) recipients of a myelin oligodendrocyte glycoprotein p35-55 encephalitogenic T cell line failed to recover from the acute phase of passive EAE. In comparison with wild-type mice, active disease was more severe in beta(2)-microglobulin KO mice. Reconstitution of TCR beta-chain KO mice with wild-type spleen cells halted progression of disease and favored recovery. Spleen cells from T cell-deficient mice, IL-7R KO mice, or IFN-gamma KO mice were ineffective in this regard. Irradiation or treatment of wild-type spleen cell population with anti-NK1.1 mAb before transfer abrogated the protective effect. Removal of DX5(+) cells from wild-type spleen cells by anti-DX5 Ab-coated magnetic beads before reconstitution abrogated the suppressive properties of the spleen cells. TCR-deficient recipients of the enriched DX5(+) cell population recovered normally from passively induced acute disease. DX5(+) cells were sorted by FACS into DX5(+) alpha beta TCR(+) and DX5(+) alpha beta TCR(-) populations. Only recipients of the former recovered normally from clinical disease. These results indicate that recovery from acute EAE is an active process that requires NK1.1(+), DX5(+) alpha beta(+) TCR spleen cells and IFN-gamma. 相似文献
6.
A partial characterization of suppressor cells in the spleens of mice conditioned with fractionated total lymphoid irradiation (TLI) 总被引:1,自引:0,他引:1
Total lymphoid irradiation (TLI) is a highly effective modality for inducing immunosuppression and transplantation tolerance. The cellular basis for this immunosuppression is not clear, although T cells have been implicated. To study further the effect of TLI on the immune system, we have examined the B cells and suppressor cells in the spleens from TLI-conditioned mice. Our results indicate that after TLI, the spleen is rapidly repopulated with many large, immature cells. The probable source of these cells is the shielded bone marrow (BM). The B cells from TLI-conditioned mice are transiently immature and hyporesponsive in vitro to a T-independent antigen. Spleen cells from TLI-conditioned mice nonspecifically suppress the in vitro T-independent anti-TNP response of normal B cells. The suppressor cells lack both B and T cell markers and adhere to Sephadex G-10. The suppressor cells in spleens from TLI-treated mice bear a number of similarities to those present in normal BM. When normal BM cells were analyzed by indirect immunofluorescence for the presence of the Mac-1 antigen, two populations of suppressor cells could be identified: one was Mac-1+ and the other was Mac-1-. These data are consistent with the possibility that a subpopulation of the suppressor cells found in normal BM and in the spleens from TLI-conditioned mice are immature cells of the monocytic/granulocytic lineage. 相似文献
7.
Moodycliffe AM Maiti S Ullrich SE 《Journal of immunology (Baltimore, Md. : 1950)》1999,162(9):5156-5163
Splenic NK1.1+CD4+ T cells that express intermediate levels of TCR alpha beta molecules (TCRint) and the DX5 Ag (believed to identify an equivalent population in NK1.1 allelic negative mice) possess the ability to rapidly produce high quantities of immunomodulatory cytokines, notably IL-4 and IFN-gamma, upon primary TCR activation in vivo. Indeed, only T cells expressing the NK1.1 Ag appear to be capable of this function. In this study, we demonstrate that splenic NK1.1-negative TCRintCD4+ T cells, identified on the basis of Fc gamma R expression, exist in naive NK1.1 allelic positive (C57BL/6) and negative (C3H/HeN) mice with the capacity to produce large amounts of IL-4 and IFN-gamma after only 8 h of primary CD3 stimulation in vitro. Furthermore, a comparison of the amounts of early cytokines produced by Fc gamma R+CD4+TCRint T cells with NK1. 1+CD4+ or DX5+CD4+TCRint T cells, simultaneously isolated from C57BL/6 or C3H/HeN mice, revealed strain and population differences. Thus, Fc gamma R defines another subpopulation of splenic CD4+TCRint cells that can rapidly produce large concentrations of immunomodulatory cytokines, suggesting that CD4+TCRint T cells themselves may represent a unique family of immunoregulatory CD4+ T cells whose members include Fc gamma R+CD4+ and NK1.1/DX5+CD4+ T cells. 相似文献
8.
Unusual T cell populations in adult murine bone marrow. Prevalence of CD3+CD4-CD8- and alpha beta TCR+NK1.1+ cells 总被引:11,自引:0,他引:11
M Sykes 《Journal of immunology (Baltimore, Md. : 1950)》1990,145(10):3209-3215
The T cell populations present in normal murine bone marrow have not been previously analyzed in detail, mainly because of their relative rarity. In order to permit such analyses, bone marrow T cells were enriched by depleting Mac1-positive cells, which constitute 65 to 90% of bone marrow cells (BMC), and then studied by two-color flow cytometry. Analysis of the remaining cells revealed that the T cell profile of adult murine bone marrow is markedly different from that of other lymphoid organs. A very high proportion of bone marrow CD3+ cells (approximately one-third) are CD4-CD8-. CD3+CD4-CD8- cells are much more concentrated among BMC T cells than among thymocytes or splenic T cells, suggesting that bone marrow may be either a site of extrathymic TCR gene rearrangement, or a major site to which such cells home from the thymus. The expression of NK1.1 was also evaluated on Mac1-depleted BMC populations. Surprisingly, up to 39% of alpha beta TCR+ BMC were found to express NK1.1. Most alpha beta TCR+NK1.1+ BMC also expressed CD4 or CD8. NK1.1+ alpha beta TCR+ cells represented a much greater proportion of BMC T cells than of other lymphoid (splenocyte or thymocyte) T cell populations. Mac1-depleted BMC of nude mice contained very few cells with this phenotype. These results are consistent with the hypothesis that NK1.1+ alpha beta TCR+ cells are generated primarily in the thymus of normal animals and migrate preferentially to bone marrow, where they may function as regulatory elements in hematopoiesis. 相似文献
9.
Y Naiki H Nishimura T Kawano Y Tanaka S Itohara M Taniguchi Y Yoshikai 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(4):2057-2063
NK1.1+ alpha beta T cells emerge in the peritoneal cavity after an i.p. infection with Salmonella choleraesuis in mice. To elucidate the role of the NK1.1+ alpha beta T cells during murine salmonellosis, mice lacking NK1.1+ alpha beta T cells by disruption of TCR beta (TCR beta-/-), beta 2m (beta 2m-/-), or J alpha 281 (J alpha 281-/-) gene were i.p. inoculated with S. choleraesuis. The peritoneal exudate T cells in wild type (wt) mice on day 3 after infection produced IL-4 upon TCR alpha beta stimulation, whereas those in TCR beta-/-, beta 2m-/-, or J alpha 281-/- mice showed no IL-4 production upon the stimulation, indicating that NK1.1+ alpha beta T cells are the main source of IL-4 production at the early phase of Salmonella infection. Neutralization of endogenous IL-4 by administration of anti-IL-4 mAb to wt mice reduced the number of Salmonella accompanied by increased IL-12 production by macrophages after Salmonella infection. The IL-12 production by the peritoneal macrophages was significantly augmented in mice lacking NK1.1+ alpha beta T cells after Salmonella infection accompanied by increased serum IFN-gamma level. The aberrantly increased IL-12 production in infected TCR beta-/- or J alpha 281-/- mice was suppressed by adoptive transfer of T cells containing NK1.1+ alpha beta T cells but not by the transfer of T cells depleted of NK1.1+ alpha beta T cells or T cells from J alpha 281-/- mice. Taken together, it is suggested that NK1. 1+ alpha beta T cells eliciting IL-4 have a regulatory function in the IL-12 production by macrophages at the early phase of Salmonella infection. 相似文献
10.
Ohta N Hiroi T Kweon MN Kinoshita N Jang MH Mashimo T Miyazaki J Kiyono H 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(1):460-468
To clarify the role of IL-15 at local sites, we engineered a transgenic (Tg) mouse (T3(b)-IL-15 Tg) to overexpress human IL-15 preferentially in intestinal epithelial cells by the use of T3(b)-promoter. Although IL-15 was expressed in the entire small intestine (SI) and large intestines of the Tg mice, localized inflammation developed in the proximal SI only. Histopathologic study revealed reduced villus length, marked infiltration of lymphocytes, and vacuolar degeneration of the villus epithelium, beginning at approximately 3-4 mo of age. The numbers of CD8(+) T cells, especially CD8alphabeta(+) T cells expressing NK1.1, were dramatically increased in the lamina propria of the involved SI. The severity of inflammation corresponded to increased numbers of CD8alphabeta(+)NK1.1(+) T cells and levels of production of the Th1-type cytokines IFN-gamma and TNF-alpha. Locally overexpressed IL-15 was accompanied by increased resistance of CD8alphabeta(+) NK1.1(+) T cells to activation-induced cell death. Our results suggest that chronic inflammation in the SI in this murine model is mediated by dysregulation of epithelial cell-derived IL-15. The model may contribute to understanding the role of CD8(+) T cells in human Crohn's disease involving the SI. 相似文献
11.
Pied S Roland J Louise A Voegtle D Soulard V Mazier D Cazenave PA 《Journal of immunology (Baltimore, Md. : 1950)》2000,164(3):1463-1469
Experimental infection of C57BL/6 mice by Plasmodium yoelii sporozoites induced an increase of CD4-CD8- NK1.1+ TCR alpha beta int cells and a down-regulation of CD4+ NK1.1+ TCR alpha beta int cells in the liver during the acute phase of the infection. These cells showed an activated CD69+, CD122+, CD44high, and CD62Lhigh surface phenotype. Analysis of the expressed TCRV beta segment repertoire revealed that most of the expanded CD4-CD8- (double-negative) T cells presented a skewed TCRV beta repertoire and preferentially used V beta 2 and V beta 7 rather than V beta 8. To get an insight into the function of expanded NK1.1+ T cells, experiments were designed in vitro to study their activity against P. yoelii liver stage development. P. yoelii-primed CD3+ NK1.1+ intrahepatic lymphocytes inhibited parasite growth within the hepatocyte. The antiplasmodial effector function of the parasite-induced NK1.1+ liver T cells was almost totally reversed with an anti-CD3 Ab. Moreover, IFN-gamma was in part involved in this antiparasite activity. These results suggest that up-regulation of CD4-CD8- NK1.1+ alpha beta T cells and down-regulation of CD4+ NK1.1+ TCR alpha beta int cells may contribute to the early immune response induced by the Plasmodium during the prime infection. 相似文献
12.
L Gapin H Cheroutre M Kronenberg 《Journal of immunology (Baltimore, Md. : 1950)》1999,163(8):4100-4104
TCR alpha beta+ intestinal intraepithelial lymphocytes (IEL) can express either the typical CD8 alpha beta heterodimer or an unusual CD8 alpha alpha homodimer. Both types of CD8+ IEL require class I molecules for their differentiation, since they are absent in beta2m-/- mice. To gain insight into the role of class I molecules in forming TCR alpha beta+ CD8+ IEL populations, we have analyzed the IEL in mice deficient for either TAP, beta 2m, CD1, or K and D. We find that K-/-D-/- mice have TCR alpha beta+ CD8 alpha alpha+ IEL, although they are deficient for TCR alpha beta+ CD8 alpha beta+ cells. This indicates that at least some TCR alpha beta+ CD8 alpha alpha+ IEL require only nonclassical class I molecules for their development. Surprisingly, the TCR alpha beta+ CD8 alpha alpha+ IEL are significantly increased in K-/-D-/- mice, suggesting a complex interaction between CD8+ IEL and class I molecules that might include direct or indirect negative regulation by K and D, as well as positive effects mediated by nonclassical class I molecules. 相似文献
13.
TCR V beta 8+ T cells prevent development of toxoplasmic encephalitis in BALB/c mice genetically resistant to the disease 总被引:2,自引:0,他引:2
Kang H Liesenfeld O Remington JS Claflin J Wang X Suzuki Y 《Journal of immunology (Baltimore, Md. : 1950)》2003,170(8):4254-4259
BALB/c are genetically resistant to development of toxoplasmic encephalitis (TE) when infected with Toxoplasma gondii, whereas CBA/Ca mice are susceptible. We compared TCR Vbeta chain usage in lymphocytes infiltrated into brains between these animals following infection. TCR Vbeta8(+) cells were the most frequent T cell population in brains of infected, resistant BALB/c mice, whereas TCR Vbeta6(+) T cells were more prevalent than Vbeta8(+) T cells in brains of infected, susceptible CBA/Ca mice. Adoptive transfer of Vbeta8(+) immune T cells, obtained from infected BALB/c mice, prevented development of TE and mortality in infected athymic nude mice that lack T cells. In contrast, adoptive transfer of Vbeta6(+) immune T cells did not prevent development of TE or mortality in the nude mice. The protective activity of Vbeta8(+) immune T cells was greater than that of the total Vbeta8(-) population. In addition, Vbeta8(+) immune T cells produced markedly greater amounts of IFN-gamma than did the Vbeta8(-) population after stimulation with tachyzoite lysate Ags in vitro. Thus, Vbeta8(+) T cells appear to play a crucial role in the genetic resistance of BALB/c mice against development of TE. 相似文献
14.
15.
16.
R C Budd J Q Russell N van Houten S M Cooper H Yagita J Wolfe 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(4):1055-1064
The T lymphocytes that accumulate in vast numbers in the lymphoid tissues of lpr/lpr (lpr) mice express a TCR-alpha beta that is polyclonally rearranged, and yet is devoid of surface CD4 or CD8 (CD4-8-) as well as CD2. lpr CD2- alpha beta + CD4-8- T cells exhibit an apparent block in signal transduction, in that when activated they produce little or no IL-2 and proliferate minimally in the absence of exogenous IL-2. In contrast to the predominant hyporesponsive alpha beta + CD4-8- T cells, we observe that a minor subset (1 to 2%) of lpr lymph node CD4-8- cells expresses a TCR-gamma delta and can proliferate upon activation with PMA and ionomycin in the absence of exogenous IL-2. Furthermore, these responsive gamma delta T cells express surface CD2. The functional and phenotypic distinctions of lpr gamma delta T cells led us to identify an analogous minor (4 to 10%) subset of alpha beta + CD4-8- cells in lpr thymus and lymph nodes that does express CD2. Similar to the gamma delta subset, these CD2+ alpha beta + CD4-8- cells are also capable of proliferation and IL-2 production. Thus the capacity for IL-2 production and proliferation by a small proportion of lpr CD4-8- T cells, either alpha beta + or gamma delta +, correlates with their expression of surface CD2. This correlation is supported by the observation that the lpr liver contains actively cycling alpha beta + CD4-8- lymphocytes that are strikingly enriched for CD2 expression. Consequently, unlike the vast proportion of abnormal lpr CD2- CD3+ CD4-8- cells, the CD2+ CD3+ CD4-8- T cells may not express the basic lpr defect, or else are not affected by its presence. These studies suggest that expression of the lpr abnormality may be restricted to a particular T cell lineage. This functional correlation with CD2 expression may be more broadly applicable to phenotypically similar subsets of normal thymocytes, and possibly peripheral tolerized T lymphocytes. 相似文献
17.
P van Vlasselaer H Gascan R de Waal Malefyt J E de Vries 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(6):1674-1684
To study the role of T cells in T-B cell interactions resulting in isotype production, autologous purified human splenic B and T cells were cocultured in the presence of IL-2 and Con A. Under these conditions high amounts of IgM, IgG, and IgA were secreted. B cell help was provided by autologous CD4+ T cells whereas autologous CD8+ T cells were ineffective. Moreover, CD8+ T cells suppressed Ig production when added to B cells cocultured with CD4+ T cells. Autologous CD4+ T cells could be replaced by allogeneic activated TCR gamma delta,CD4+ or TCR alpha beta,CD4+ T cell clones with nonrelevant specificities, indicating that the TCR is not involved in these T-B cell interactions. In contrast, resting CD4+ T cell clones, activated CD8+, or TCR gamma delta,CD4-,CD8- T cell clones failed to induce IL-2-dependent Ig synthesis. CD4+ T-B cell interaction required cell-cell contact. Separation of the CD4+ T and B cells by semiporous membranes or replacement of the CD4+ T cells by their culture supernatants did not result in Ig synthesis. However, intact activated TCR alpha beta or TCR gamma delta,CD4+ T cell clones could be replaced by plasma membrane preparations of these cells. Ig synthesis was blocked by mAb against class II MHC and CD4. These data indicate that in addition to CD4 and class II MHC Ag a membrane-associated determinant expressed on both TCR alpha beta or TCR gamma delta,CD4+ T cells after activation is required for productive T-B cell interactions resulting in Ig synthesis. Ig production was also blocked by mAb against IL-2 and the IL-2R molecules Tac and p75 but not by anti-IL-4 or anti-IL-5 mAb. The CD4+ T cell clones and IL-2 stimulated surface IgM-IgG+ and IgM-IgA+, but not IgM+IgG- or IgM+IgA- B cells to secrete IgG and IgA, respectively, indicating that they induced a selective expansion of IgG- and IgA-committed B cells rather than isotype switching in Ig noncommitted B cells. Induction of Ig production by CD4+ T cell clones and IL-2 was modulated by other cytokines. IL-5 and transforming growth factor-beta enhanced, or blocked, respectively, the production of all isotypes in a dose-dependent fashion. Interestingly, IL-4 specifically blocked IgA production in this culture system, indicating that IL-4 inhibits only antibody production by IgA-committed B cells. 相似文献
18.
J P Lake C W Pierce J D Kennedy 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(4):1121-1126
Phenotypic analysis of lymphocytes that mature extrathymically in congenitally athymic nude mice has revealed a large population of CD3+ CD8+ T cells that express gamma/delta-TCR. In euthymic mice, significant numbers of cells with this phenotype are found only in the intestinal epithelium. Intestinal intraepithelial lymphocytes have been shown to be cytolytically active in vivo, as measured by the redirected lysis assay. In this communication, freshly harvested T cell subsets obtained from pooled nude mouse spleen and lymph nodes and separated by flow cytometric cell sorting were assayed for their ability to lyse FcR+ P815 targets in the presence of mAb to the epsilon-chain of the CD3 complex. CD8+, but not CD4+ or CD4- CD8-, T cells in nude mice were cytolytically active. CD8+ alpha/beta- and gamma/delta-TCR-bearing T cells from the spleen and lymph nodes of nude mice demonstrated similar cytolytic activity. No cytolytic activity of purified cell subsets was apparent in the absence of anti-CD3 mAb, even when NK-susceptible target cells were used. These data indicate that, in contrast to euthymic mice, a large proportion of CD8+ cells from the spleen and lymph nodes of nude mice are cytolytically active in vivo. In addition, these results suggest that the intestinal epithelium is not the only anatomical location where constitutively cytolytic CD8+ alpha/beta- or gamma/delta TCR-bearing T cells may be found. 相似文献
19.
A better understanding of the regulatory role of genital tract T cells is much needed. In this study, we have analyzed the phenotype, distribution, and function of T lymphocytes in the female genital tract of naive, pregnant, or Chlamydia trachomatis-infected C57BL/6 mice. Unexpectedly, we found that the dominant lymphocyte population (70-90%) in the genital tract was that of CD3(+)alphabetaTCR(int)CD4(-)CD8(-) T cells. Moreover, these cells were CD90(low) but negative for the classical T cell markers CD2 and CD5. The CD3(+)B220(low) cells were NK1.1 negative and found in nude mice as well as in mice deficient for MHC class II, beta(2)-microglobulin, and CD1, indicating extrathymic origin. They dominated the KJ126(+)Vbeta8.2(+) population in the genital tract of DO11.10 OVA TCR-transgenic mice, further supporting the idea that the CD3(+)B220(low) cells are truly T cells. The function of these T cells appeared not to be associated with immune protection, because only CD4(+) and CD8(+) T cells increased in the genital tract following chlamydial infection. Notwithstanding this, the infected, as well as the uninfected and the pregnant, uterus was dominated by a high level of the CD3(+)CD4(-)CD8(-)B220(low) cells. Following in vitro Ag or polyclonal stimulation of the CD3(+)CD4(-)CD8(-)B220(low) cells, poor proliferative responses were observed. However, these cells strongly impaired splenic T cell proliferation in a cell density-dependent manner. A large fraction of the cells expressed CD25 and produced IFN-gamma upon anti-CD3 plus anti-CD28 stimulation, arguing for a strong regulatory role of this novel T cell population in the mouse female genital tract. 相似文献
20.
M Bruley-Rosset I Miconnet C Canon O Halle-Pannenko 《Journal of immunology (Baltimore, Md. : 1950)》1990,145(12):4046-4052
Grafting of cells from B10.D2 (H-2d) donors into H-2 compatible lethally irradiated (DBA/2 x B10.D2)F1 hosts results in a severe graft-vs-host reaction (GVHR), developed against DBA/2 non-H-2 Ag, with only 0 to 10% of animals surviving. This GVHR mortality rate is dramatically reduced (90 to 100% of animals survive) by donor preimmunization against Mlsa determinants. The protection against GVHR correlates with a decreased B10.D2 anti-DBA/2 proliferative response in vitro. Both in vivo and in vitro phenomena are associated with activation of CD5+ suppressor T cells in the spleens of immunized mice. The present work was designed to study the origin of these suppressor cells and to further characterize their phenotype. The results show that significant suppression is not inducible in "B" mice. In contrast, in mice that were only thymectomized or else pretreated in vivo with anti-CD4 or anti-CD8 mAb, the suppressor cells are activated as efficiently as in normal mice. The suppression of GVHR mortality and proliferative responses in vitro is lost after depletion from preimmunized splenocytes of CD5+ T cells and remains unaltered after depletion of CD4+ or CD8+ T cells or both. Depletion of asialo GM1+ cells removes all NK activity, whereas the suppression is decreased only slightly. FACS analysis showed that double-negative (DN) cells from normal and immunized mice contain both CD3+ and CD3- cells; the vast majority of the CD3+ DN T cells express the alpha/beta T cell receptor. Suppression of GVHR and of proliferative responses in vitro are abrogated after elimination of CD3+ cells. These results suggest that Mlsa generated suppressor cells: 1) are derived from post-thymic long-lived T cell precursors; 2) are low asialo GM-1+ but do not exhibit NK activity; 3) belong to a subset of peripheral CD5+ DN T cells bearing a CD3-associated alpha/beta-heterodimer. 相似文献