首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helicobacter pylori (H. pylori) is a causative agent of gastric diseases ranging from gastritis to cancer. The CagA protein is the product of the cagA gene carried among virulent H. pylori strains and is associated with severe disease outcomes, most notably gastric carcinoma. CagA is injected from the attached H. pylori into gastric epithelial cells and undergoes tyrosine phosphorylation. The phosphorylated CagA binds and activates SHP-2 phosphatase and thereby induces a growth factor-like morphological change termed the "hummingbird phenotype." In this work, we demonstrate that CagA is also capable of interacting with C-terminal Src kinase (Csk). As is the case with SHP-2, Csk selectively binds tyrosine-phosphorylated CagA via its SH2 domain. Upon complex formation, CagA stimulates Csk, which in turn inactivates the Src family of protein-tyrosine kinases. Because Src family kinases are responsible for CagA phosphorylation, an essential prerequisite of CagA.SHP-2 complex formation and subsequent induction of the hummingbird phenotype, our results indicate that CagA-Csk interaction down-regulates CagA.SHP-2 signaling by both competitively inhibiting CagA.SHP-2 complex formation and reducing levels of CagA phosphorylation. We further demonstrate that CagA.SHP-2 signaling eventually induces apoptosis in AGS cells. Our results thus indicate that CagA-Csk interaction prevents excess cell damage caused by deregulated activation of SHP-2. Attenuation of CagA activity by Csk may enable cagA-positive H. pylori to persistently infect the human stomach for decades while avoiding excess CagA toxicity to the host.  相似文献   

2.
Upon delivery into gastric epithelial cells, Helicobacter pylori cytotoxin-associated gene A (CagA) binds and deregulates cellular proteins such as Src homology 2 domain-containing protein tyrosine phosphatase 2 and partitioning-defective 1 (PAR1), thereby acting as an epigenetic oncoprotein that promotes early phases of gastric cancer development. To elucidate the spatial and temporal contribution of CagA to carcinogenesis, it is crucial to know the stability of CagA in host cells. Here we show that the biological half-life of CagA is about 200 min in gastric epithelial cells. Furthermore, deletion of the PAR1-binding sequence accelerates CagA degradation. Thus, CagA is a relatively short half-life protein whose stability may be modulated through complex formation with PAR1.  相似文献   

3.
Infection with cagA-positive Helicobacter pylori (H. pylori) is associated with atrophic gastritis, peptic ulcer, and gastric adenocarcinoma. The cagA gene product CagA is translocated from H. pylori into gastric epithelial cells and undergoes tyrosine phosphorylation by Src family kinases (SFKs). Tyrosine-phosphorylated CagA binds and activates SHP-2 phosphatase and the C-terminal Src kinase (Csk) while inducing an elongated cell shape termed the "hummingbird phenotype." Here we show that CagA reduces the level of focal adhesion kinase (FAK) tyrosine phosphorylation in gastric epithelial cells. The decrease in phosphorylated FAK is due to SHP-2-mediated dephosphorylation of FAK at the activating phosphorylation sites, not due to Csk-dependent inhibition of SFKs, which phosphorylate FAK. Coexpression of constitutively active FAK with CagA inhibits induction of the hummingbird phenotype, whereas expression of dominant-negative FAK elicits an elongated cell shape characteristic of the hummingbird phenotype. These results indicate that inhibition of FAK by SHP-2 plays a crucial role in the morphogenetic activity of CagA. Impaired cell adhesion and increased motility by CagA may be involved in the development of gastric lesions associated with cagA-positive H. pylori infection.  相似文献   

4.
Helicobacter pylori cagA-positive strains are associated with gastric adenocarcinoma. The cagA gene product CagA is delivered into gastric epithelial cells where it localizes to the plasma membrane and undergoes tyrosine phosphorylation at the EPIYA-repeat region, which contains the EPIYA-A segment, EPIYA-B segment, and Western CagA-specific EPIYA-C or East Asian CagA-specific EPIYA-D segment. In host cells, CagA specifically binds to and deregulates SHP-2 phosphatase via the tyrosine-phosphorylated EPIYA-C or EPIYA-D segment, thereby inducing an elongated cell shape known as the hummingbird phenotype. In this study, we found that CagA multimerizes in cells in a manner independent of its tyrosine phosphorylation. Using a series of CagA mutants, we identified a conserved amino acid sequence motif (FPLXRXXXVXDLSKVG), which mediates CagA multimerization, within the EPIYA-C segment as well as in a sequence that located immediately downstream of the EPIYA-C or EPIYA-D segment. We also found that a phosphorylation-resistant CagA, which multimerizes but cannot bind SHP-2, inhibits the wild-type CagA-SHP-2 complex formation and abolishes induction of the hummingbird phenotype. Thus, SHP-2 binds to a preformed and tyrosinephosphorylated CagA multimer via its two Src homology 2 domains. These results, in turn, indicate that CagA multimerization is a prerequisite for CagA-SHP-2 interaction and subsequent deregulation of SHP-2. The present work raises the possibility that inhibition of CagA multimerization abolishes pathophysiological activities of CagA that promote gastric carcinogenesis.  相似文献   

5.
The CagA protein of Helicobacter pylori, which is injected from the bacteria into bacteria-attached gastric epithelial cells, is associated with gastric carcinoma. CagA is tyrosine-phosphorylated by Src family kinases, binds the SH2 domain-containing SHP-2 phosphatase in a tyrosine phosphorylation-dependent manner, and deregulates its enzymatic activity. We established AGS human gastric epithelial cells that inducibly express wild-type or a phosphorylation-resistant CagA, in which tyrosine residues constituting the EPIYA motifs were substituted with alanines. Upon induction, wild-type CagA, but not the mutant CagA, elicited strong elongation of cell shape, termed the "hummingbird" phenotype. Time-lapse video microscopic analysis revealed that the CagA-expressing cells exhibited a marked increase in cell motility with successive rounds of elongation-contraction processes. Inhibition of CagA phosphorylation by an Src kinase inhibitor, PP2, or knockdown of SHP-2 expression by small interference RNA (siRNA) abolished the CagA-mediated hummingbird phenotype. The morphogenetic activity of CagA also required Erk MAPK but was independent of Ras or Grb2. In AGS cells, CagA prolonged duration of Erk activation in response to serum stimulation. Conversely, inhibition of SHP-2 expression by siRNA abolished the sustained Erk activation. Thus, SHP-2 acts as a positive regulator of Erk activity in AGS cells. These results indicate that SHP-2 is involved in the Ras-independent modification of Erk signals that is necessary for the morphogenetic activity of CagA. Our work therefore suggests a key role of SHP-2 in the pathological activity of H. pylori virulence factor CagA.  相似文献   

6.
Jin S  Wu M  Cao H  Ying S  Hua J  Chen Y 《Helicobacter》2012,17(2):140-147
Background and Aims: Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP‐2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. Methods: We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two‐dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). Results: It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27kip1 protein. Conclusion: Our data suggested that hnRNPC1/2 upregulates p27kip1 expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA‐mediated pathogenesis.  相似文献   

7.
为了研究胃癌细胞中幽门螺杆菌(Hp)毒素蛋白CagA诱导的蛋白差异表达及其基因在人胃癌组织中的表达,用Hp感染胃癌细胞系SGC 7901和AGS及用含CagA基因的表达载体稳定转染SGC 7901细胞, 构建3组实验模型.提取各组细胞的总蛋白进行双向凝胶电泳,筛选3组重叠的差异表达蛋白质斑点进行质谱鉴定.共获得135个差异表达的蛋白质,其中上调蛋白质73个,下调蛋白质62个. 鉴定出10个差异表达蛋白质, 其中有6个差异表达蛋白是首次发现,它们主要参与细胞的能量代谢和信号转导等.最后定量检测了这10个差异表达蛋白基因在人胃癌组织中的表达, 发现有4个基因高表达和1个基因低表达. 本结果将为研究幽门螺杆菌感染引起胃癌的分子机制提供新的线索.  相似文献   

8.
9.
Lai YP  Yang JC  Lin TZ  Lin JT  Wang JT 《Helicobacter》2006,11(5):451-459
BACKGROUND: Increasing evidence has shown that Helicobacter pylori CagA protein translocation into gastric epithelial cells plays an important role in the development of gastric inflammation and malignancy. Translocated CagA undergoes tyrosine phosphorylation in gastric adenocarcinoma cell line cells, and CagA involves disruption of cellular apical-junction complex in Madin-Darby canine kidney cells. METHODS: To elucidate whether these events take place in normal human gastric epithelium, we infected human primary gastric epithelial cells with H. pylori. RESULTS: Our results demonstrate that CagA protein was translocated into primary gastric epithelial cells and tyrosine phosphorylated. The translocated CagA induces cytoskeletal rearrangement and the disruption of tight junctions in primary gastric epithelial cells. CONCLUSIONS: This study provides direct evidence of the modulation of gastric epithelial cells by CagA protein translocation, and advances our understanding of the pathogenesis of H. pylori infection.  相似文献   

10.
Grb2 is a key mediator of helicobacter pylori CagA protein activities   总被引:11,自引:0,他引:11  
CagA delivered from Helicobacter pylori into gastric epithelial cells undergoes tyrosine phosphorylation and induces host cell morphological changes. Here we show that CagA can interact with Grb2 both in vitro and in vivo, which results in the activation of the Ras/MEK/ERK pathway and leads to cell scattering as well as proliferation. Importantly, this ability of CagA is independent from the tyrosine phosphorylation, which occurs within the five repeated EPIYA sequences (PY region) of CagA. However, the PY region appears to be indispensable for the Grb2 binding and induction of the cellular responses. Thus, intracellular CagA via its binding to Grb2 may act as a transducer for stimulating growth factor-like downstream signals which lead to cell morphological changes and proliferation, the causes of H. pylori-induced gastric hyperplasia.  相似文献   

11.
The CagA protein is one of the virulence factors of Helicobacter pylori, and two major subtypes of CagA have been observed, the Western and East Asian type. CagA is injected from the bacteria into gastric epithelial cells, undergoes tyrosine phosphorylation, and binds to Src homology 2 domain-containing protein-tyrosine phosphatase SHP-2. The East Asian type CagA binds to SHP-2 more strongly than the Western type CagA. Here, we tried to distinguish the CagA type by highly sensitive real-time PCR with the objective of establishing a system to detect H. pylori and CagA subtypes from gastric biopsies. We designed primers and probe sets for Western or East Asian-cagA at Western-specific or East Asian-specific sequence regions, respectively, and H. pylori 16S rRNA. We could detect the H. pylori 16S rRNA gene, Western and East Asian-cagA gene from DNA of gastric biopsies. The sensitivity and specificity for H. pylori infection was 100% in this system. In Thai patients, 87.8% (36/41) were cagA-positive; 26.8% (11/41) were Western-cagA positive and 53.7% (22/41) were East Asian-cagA positive, while 7.3% (3/41) reacted with both types of cagA. These results suggest that this real-time PCR system provides a highly sensitive assessment of CagA type as a new diagnostic tool for the pathogenicity of H. pylori infection.  相似文献   

12.
Nam YH  Ryu E  Lee D  Shim HJ  Lee YC  Lee ST 《Helicobacter》2011,16(4):276-283
Background: Infection of cagA‐positive Helicobacter pylori is associated with increased expression of MMPs in gastric epithelial cells. The role of phosphorylated CagA in the induction of MMP‐9, a protease‐degrading basement membrane, in gastric epithelial cells has not been clearly defined yet. The aim of this study is to analyze whether the presence of CagA and its phosphorylation status play a role in increased expression of MMP‐9 in gastric epithelial cells. Materials and Methods: Induction of MMP‐9 secretion was analyzed in gastric epithelial AGS cells harboring CagA with or without EPIYA motif, which is injected by H. pylori or ectopically expressed. In addition, signaling pathways involved in the CagA‐dependent MMP‐9 production have been studied. Results: The 147C strain of H. pylori expressing tyrosine‐phosphorylated CagA (EPIYA present) induced higher MMP‐9 secretion by AGS cells than the 147A strain expressing non‐tyrosine‐phosphorylated CagA (EPIYA absent). In addition, in bacteria‐free CagA‐inducible AGS cells, expression of wild‐type CagA induced more MMP‐9 secretion than phosphorylation‐resistant CagA. Inhibition of CagA phosphorylation by the Src family kinase inhibitor PP1 downregulated CagA‐mediated MMP‐9 secretion. Knockdown of SHP‐2 phosphatase dramatically reduced MMP‐9 secretion. ERK inhibitors, PD98059 and U0126, and NF‐κB pathway inhibitors, sulfasalazine and N‐acetyl‐l ‐cysteine, also inhibited MMP‐9 expression. Conclusion: These results support a model whereby the EPIYA motif of CagA is phosphorylated by Src family kinases in gastric epithelial cells, which initiates activation of SHP‐2. In addition, they suggest that the resultant activation of ERK pathway along with CagA‐dependent NF‐κB activation is critical for the induction of MMP‐9 secretion.  相似文献   

13.
The gastric pathogen Helicobacter pylori uses a type IV secretion system to inject the bacterial CagA protein into gastric epithelial cells. Within the host cell, CagA becomes phosphorylated on tyrosine residues and initiates cytoskeletal rearrangements. We demonstrate here that Src-like protein-tyrosine kinases mediate CagA phosphorylation in vitro and in vivo. First, the Src-specific tyrosine kinase inhibitor PP2 specifically blocks CagA phosphorylation and cytoskeletal rearrangements thereby inhibiting the CagA-induced hummingbird phenotype of gastric epithelial cells. Second, CagA is in vivo phosphorylated by transiently expressed c-Src. Third, recombinant c-Src and lysates derived from c-Src-expressing fibroblasts but not lysates derived from Src-, Yes-, and Fyn-deficient cells phosphorylated CagA in vitro. Fourth, a transfected CagA-GFP fusion protein is phosphorylated in vivo in Src-positive fibroblasts but not in Src-, Yes-, and Fyn-deficient cells. Because a CagA-GFP fusion protein mutated in an EPIYA motif is not efficiently phosphorylated in any of these fibroblast cells, the CagA EPIYA motif appears to constitute the major c-Src phosphorylation site conserved among CagA-positive Helicobacter strains.  相似文献   

14.
Hirata Y  Yanai A  Shibata W  Mitsuno Y  Maeda S  Ogura K  Yoshida H  Kawabe T  Omata M 《Gene》2004,343(1):165-172
CagA protein of Helicobacter pylori is injected into the epithelium, where CagA undergoes tyrosine phosphorylation and activates proliferation signals. However, the importance of these CagA activities for pathogenesis has yet to be resolved. The aim of this study is to analyze the genetic and functional variability of cagA gene of clinical strains in relation to gastric diseases. Thirty-six H. pylori strains were isolated from Japanese patients with various gastric diseases and examined. All 36 strains were found to contain cagA and cagE gene and to induce CagA phosphorylation upon infection. The intensity of CagA phosphorylation expressed in HeLa cells by transfection was highly correlated to the number of R1 region. The phosphorylation intensity was slightly higher in strains from chronic atrophic gastritis (CG); however, the differences were not statistically significant. These CagA proteins also activated the serum response element (SRE) reporter by 5- to 14-fold, above the level of the control. CagA proteins which lack R2 or R3 region exhibited smaller ability for SRE activation. The average of SRE activation was slightly higher in strains from cases of gastric cancer (GC; 11.4+/-1.6), MALT lymphoma (ML; 10.7+/-1.0), and chronic atrophic gastritis (CG; 11.2+/-1.6) than in those of duodenal ulcer (DU; 8.3+/-1.9) or gastric ulcer (GU; 9.0+/-1.1). In summary, most Japanese H. pylori strains contained CagA transport system and induced CagA phosphorylation, and the levels of the intensity of phosphorylation and the ability to induce SRE varied among strains. Although the association between CagA activities and disease outcome shown in this study is not very strong, variety of CagA structure, which induces variable activities, may be one of the reasons why H. pylori induces distinct diseases on host.  相似文献   

15.
16.
Helicobacter pylori contributes to the development of peptic ulcers and atrophic gastritis. Furthermore, H. pylori strains carrying the cagA gene are more virulent than cagA-negative strains and are associated with the development of gastric adenocarcinoma. The cagA gene product, CagA, is translocated into gastric epithelial cells and localizes to the inner surface of the plasma membrane, in which it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif. Tyrosine-phosphorylated CagA specifically binds to and activates Src homology 2-containing protein-tyrosine phosphatase-2 (SHP-2) at the membrane, thereby inducing an elongated cell shape termed the hummingbird phenotype. Accordingly, membrane tethering of CagA is an essential prerequisite for the pathogenic activity of CagA. We show here that membrane association of CagA requires the EPIYA-containing region but is independent of EPIYA tyrosine phosphorylation. We further show that specific deletion of the EPIYA motif abolishes the ability of CagA to associate with the membrane. Conversely, reintroduction of an EPIYA sequence into a CagA mutant that lacks the EPIYA-containing region restores membrane association of CagA. Thus, the presence of a single EPIYA motif is necessary for the membrane localization of CagA. Our results indicate that the EPIYA motif has a dual function in membrane association and tyrosine phosphorylation, both of which are critically involved in the activity of CagA to deregulate intracellular signaling, and suggest that the EPIYA motif is a crucial therapeutic target of cagA-positive H. pylori infection.  相似文献   

17.
Infection with the human gastric pathogen Helicobacter pylori is associated with a spectrum of diseases including gastritis, peptic ulcers, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. The cytotoxin-associated gene A (CagA) protein of H. pylori, which is translocated into host cells via a type IV secretion system, is a major risk factor for disease development. Experiments in gastric tissue culture cells have shown that once translocated, CagA activates the phosphatase SHP-2, which is a component of receptor tyrosine kinase (RTK) pathways whose over-activation is associated with cancer formation. Based on CagA's ability to activate SHP-2, it has been proposed that CagA functions as a prokaryotic mimic of the eukaryotic Grb2-associated binder (Gab) adaptor protein, which normally activates SHP-2. We have developed a transgenic Drosophila model to test this hypothesis by investigating whether CagA can function in a well-characterized Gab-dependent process: the specification of photoreceptors cells in the Drosophila eye. We demonstrate that CagA expression is sufficient to rescue photoreceptor development in the absence of the Drosophila Gab homologue, Daughter of Sevenless (DOS). Furthermore, CagA's ability to promote photoreceptor development requires the SHP-2 phosphatase Corkscrew (CSW). These results provide the first demonstration that CagA functions as a Gab protein within the tissue of an organism and provide insight into CagA's oncogenic potential. Since many translocated bacterial proteins target highly conserved eukaryotic cellular processes, such as the RTK signaling pathway, the transgenic Drosophila model should be of general use for testing the in vivo function of bacterial effector proteins and for identifying the host genes through which they function.  相似文献   

18.
Population genetic analyses of bacterial genes whose products interact with host tissues can give new understanding of infection and disease processes. Here we show that strains of the genetically diverse gastric pathogen Helicobacter pylori from Amerindians from the remote Peruvian Amazon contain novel alleles of cagA, a major virulence gene, and reveal distinctive properties of their encoded CagA proteins. CagA is injected into the gastric epithelium where it hijacks pleiotropic signaling pathways, helps Hp exploit its special gastric mucosal niche, and affects the risk that infection will result in overt gastroduodenal diseases including gastric cancer. The Amerindian CagA proteins contain unusual but functional tyrosine phosphorylation motifs and attenuated CRPIA motifs, which affect gastric epithelial proliferation, inflammation, and bacterial pathogenesis. Amerindian CagA proteins induced less production of IL-8 and cancer-associated Mucin 2 than did those of prototype Western or East Asian strains and behaved as dominant negative inhibitors of action of prototype CagA during mixed infection of Mongolian gerbils. We suggest that Amerindian cagA is of relatively low virulence, that this may have been selected in ancestral strains during infection of the people who migrated from Asia into the Americas many thousands of years ago, and that such attenuated CagA proteins could be useful therapeutically.  相似文献   

19.
The Helicobacter pylori virulence factor, CagA, is causally linked to lymphoma of gastric mucosa-associated lymphoid tissue (MALT). However, it is unclear how CagA promotes the development of gastric MALT lymphoma. We investigated whether CagA modulates the activation of Erk1/2 and their downstream apoptosis regulators in B lymphocytes. Transfection of B1 lymphocytes with cagA transiently increased Erk1/2 phosphorylation, which was negatively regulated by MKP-1 and MKP-6. Activation of Erk1/2 led to phosphorylation of Bad at Ser-112, as confirmed with a chemical Erk1/2 inhibitor. However, CagA-induced Erk1/2 activation did not alter expression of either Bcl-2 or Bax. Importantly, cagA-transfected B1 cells were significantly protected against apoptosis induced by hydroxyurea. Our results reveal that CagA, to some extent like IL-3, can enhance lymphocytes' ability to evade apoptosis through phosphorylation of Bad. This may account, at least in part, for the ability of CagA to promote lymphomagenesis.  相似文献   

20.
Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号