首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New tools for the physical and genetic mapping of Lactococcus strains.   总被引:7,自引:0,他引:7  
Tools for the genetic and physical analysis of the Lactococcus lactis subsp. lactis genome were developed. Plasmid pRC1 does not replicate in Gram+ bacteria; it contains unique ApaI, NotI and SmaI restriction sites and an erythromycin-resistance (ErR) encoding gene, ermAM, functional in L. lactis subsp. lactis. When a chromosomal L. lactis subsp. lactis DNA fragment was cloned into this vector, the resulting plasmid became integrated, after transformation, into the bacterial chromosome by homologous recombination in a Campbell-like manner. The integration lead to the generation of new rare restriction sites near to the host fragment. This procedure allows precise mapping of cloned genes onto the chromosomal restriction map. The mapping of the his operon of L. lactis subsp. lactis provides an illustration. The cloning into pRC1 of an IS element able to transpose into the chromosome of the target cell, gave rise to an integration plasmid able to insert randomly rare restriction sites onto the bacterial chromosome. The L. lactis IS element, ISS1RS, was cloned into pRC1, yielding pRL1. Pulsed-field gel electrophoresis analysis of ErR clones obtained after transformation with pRL1, showed that this plasmid was stably integrated at a number of different sites in the L. lactis subsp. lactis chromosome, via transposition. Plasmids pRC1 and pRL1 can greatly facilitate the construction of the physical and genetic map of the chromosome of lactococcal strains.  相似文献   

2.
T S Balganesh  S A Lacks 《Gene》1984,29(1-2):221-230
A new plasmid, pLS101, was constructed for use as a vector for cloning in Streptococcus pneumoniae. This plasmid carries two selectable genes, tet and malM, each of which contains two or more restriction sites for cloning. Insertional inactivation of the malM gene allowed direct selection of TcRMal- clones containing recombinant plasmids. Other means of enriching a recipient population for cells containing recombinant plasmids were examined. The effect of removing vector terminal phosphate in attempts to clone heterogeneous DNA fragments, such as those from chromosomal DNA, was to abolish recombinant plasmid establishment altogether, presumably because donor DNA processing during entry into the cell prevented establishment of the hemiligated molecule. However, with homogeneous DNA fragments, such as those from plasmid or viral DNA, vector phosphate removal allowed enrichment for recombinant plasmids. In the cloning of heterogeneous DNA that was homologous to the recipient chromosome (i.e. chromosomal DNA from S. pneumoniae), recovery of recombinant plasmids could be enriched tenfold (relative to the regenerated vector) by the process of chromosomal facilitation of plasmid establishment. This involved an additional passage of the mixed plasmids in which interaction with the chromosome of plasmids containing chromosomal DNA inserts (i.e. recombinant plasmids) increased their frequency of establishment relative to the vector plasmid. An overall strategy for cloning in S. pneumoniae, depending on the nature of the fragment to be cloned, is proposed.  相似文献   

3.
We describe the molecular cloning of a 6-kilobase (kb) fragment of yeast chromosomal DNA containing the RAD3 gene of Saccharomyces cerevisiae. When present in the autonomously replicating yeast cloning vector YEp24, this fragment transformed two different UV-sensitive, excision repair-defective rad3 mutants of S. cerevisiae to UV resistance. The same result was obtained with a variety of other plasmids containing a 4.5-kb subclone of the 6-kb fragment. The UV sensitivity of mutants defective in the RAD1, RAD2, RAD4, and RAD14 loci was not affected by transformation with these plasmids. The 4.5-kb fragment was subcloned into the integrating yeast vector YIp5, and the resultant plasmid was used to transform the rad3-1 mutant to UV resistance. Both genetic and physical studies showed that this plasmid integrated by homologous recombination into the rad3 site uniquely. We conclude from these studies that the cloned DNA that transforms the rad3-1 mutant to UV resistance contains the yeast chromosomal RAD3 gene. The 4.5-kb fragment was mapped by restriction analysis, and studies on some of the subclones generated from this fragment indicate that the RAD3 gene is at least 1.5 kb in size.  相似文献   

4.
A new method of plasmid DNA transfer from the donor strain Escherichia coli S17-1 to the erythomycin-producing strain Saccharopolyspora erythraea and avermectin-producing strain Streptomyces avermitilis via intergeneric conjugation was proposed. The optimal parameters of the method were chosen for increasing the efficiency of crosses and ensuring easily reproducible results. The behavior of the multicopy plasmid pPM803 and the integration vector pTO1 along with a number of new plasmids specially created by us, was examined in these strains. A new plasmid vector (pSI60) capable of integrating into the chromosome of actinomycetes at the integration site of the temperate actinophage phi C31 was constructed. This vector possesses unique sites convenient for cloning and may be stably maintained in exconjugants of S. avermitilis and in the model strain Streptomyces lividans. The gene encoding resistance to spectinomycin and streptomycin was cloned into the vector pSI60 in this strain. For cloning in strain Sac. erythraea, vectors pSI261-280, which integrate into the chromosome via homology with the cloned DNA and can be stably maintained in exconjugants, were constructed.  相似文献   

5.
A host-vector system for Pseudomonas aeruginosa PAO was developed. Scattered regions of the strain PAO chromosome were cloned by direct selection for complementation of auxotrophs or from a DNA gene bank which contains over 1,000 independently isolated chromosome-vector recombinant plasmids. The use of partially digested chromosomal DNA facilitated the selection of a variety of strain PAO chromosomal markers. The progenitor of the vector was a small, multicopy plasmid, pRO1600, found in a PAO strain which had acquired RP1 in a mating experiment. The bacterial host range that could be determined by transformation of vectors produced from pRO1600 resembles that for plasmid RP1. Two derivative plasmids were formed: pRO1613, for cloning DNA cleaved with restriction endonuclease PstI, and pRO1614, which was formed by deleting part of pRO1613 and fusion with plasmid pBR322. Plasmid pRO1614 utilizes known cloning sites within the tetracycline resistance region of pBR322.  相似文献   

6.
The genetic manipulation of cells is the most promising strategy for designing microorganisms with desired traits. The most widely used approaches for integrating specific DNA-fragments into the Escherichia coli genome are based on bacteriophage site-specific and Red/ET-mediated homologous recombination systems. Specifically, the recently developed Dual In/Out integration strategy enables the integration of DNA fragments directly into specific chromosomal loci (Minaeva et al., 2008). To develop this strategy further, we designed a method for the precise cloning of any long DNA fragments from the E. coli chromosome and their targeted insertion into the genome that does not require PCR. In this method, the region of interest is flanked by I-SceI rare-cutting restriction sites, and the I-SceI-bracketed region is cloned into the unique I-SceI site of an integrative plasmid vector that then enables its targeted insertion into the E. coli chromosome via bacteriophage φ80 Int-mediated specialized recombination. This approach allows any long specific DNA fragment from the E. coli genome to be cloned without a PCR amplification step and reproducibly inserted into any chosen chromosomal locus. The developed method could be particularly useful for the construction of marker-less and plasmid-less recombinant strains in the biotechnology industry.  相似文献   

7.
A useful method for inserting any DNA fragment into the chromosome of Neisseriae has been developed. The method relies on recombination-proficient vector plasmid pNLE1, a pUC19 derivative containing (1) genes conferring resistance to ampicillin and erythromycin, as selectable markers; (2) a chromosomal region necessary for its integration into the Neisseria chromosome; (3) a specific uptake sequence which is required for natural transformation; (4) a promoter capable of functioning in Neisseria; and (5) several unique restriction sites useful for cloning. pNLE1 integrates into the leuS region of the neisserial chromosome at high frequencies by transformation-mediated recombination. The usefulness of this vector has been demonstrated by cloning the tetracycline-resistance gene (tet) and subsequently inserting the tet gene into the meningococcal chromosome.  相似文献   

8.
Cells of S. pneumoniae contain either DpnI, a restriction endonuclease that cleaves only the methylated DNA sequence 5'-GmeATC-3', or DpnII, which cleaves the same sequence when not methylated. A chromosomal DNA segment containing DpnII genes was cloned in S. pneumoniae. Nucleotide sequencing of this segment revealed genes encoding the methylase and endonuclease and a third protein of unknown function. When the plasmid was introduced into DpnI cells, recombination during chromosomal facilitation of its establishment substituted genes encoding the DpnI endonuclease and another protein in place of the DpnII genes. DNA hybridization and sequencing showed that the DpnI and DpnII segments share homology on either side but not between themselves or with other regions of the chromosome. Thus, the complementary restriction systems are found on nonhomologous and mutually exclusive cassettes that can be inserted into a particular point in the chromosome of S. pneumoniae on the basis of neighboring homology.  相似文献   

9.
Reverse genetics has become pivotal in influenza virus research relying on rapid generation of tailored recombinant influenza viruses. They are rescued from transfected plasmids encoding the eight influenza virus gene segments, which have been cloned using restriction endonucleases and DNA ligation. However, suitable restriction cleavage sites often are not available. Here, we describe a cloning method universal for any influenza A virus strain which is independent of restriction sites. It is based on target-primed plasmid amplification in which the insert provides two megaprimers and contains termini homologous to plasmid regions adjacent to the insertion site. For improved efficiency, a cloning vector was designed containing the negative selection marker ccdB flanked by the highly conserved influenza A virus gene termini. Using this method, we generated complete sets of functional gene segments from seven influenza A strains and three haemagglutinin genes from different serotypes amounting to 59 cloned influenza genes. These results demonstrate that this approach allows rapid and reliable cloning of any segment from any influenza A strain without any information about restriction sites. In case the PCR amplicon ends are homologous to the plasmid annealing sites only, this method is suitable for cloning of any insert with conserved termini.  相似文献   

10.
Escherichia coli drug resistance plasmids were introduced into Deinococcus radiodurans by cloning D. radiodurans DNA into the plasmids prior to transformation. The plasmids were integrated into the chromosome of the transformants and flanked by a direct repeat of the cloned D. radiodurans segment. The plasmid and one copy of the flanking chromosomal segment constituted a unit ("amplification unit") which was found repeated in tandem at the site of chromosomal integration. Up to 50 copies of the amplification unit were present per chromosome, accounting for approximately 10% of the genomic DNA. Circular forms of the amplification unit were also present in D. radiodurans transformants. These circles were introduced into E. coli, where they replicated as plasmids. The drug resistance determinants which have been introduced into D. radiodurans in this fashion are cat (from Tn9) and aphA (from Tn903). Transformation of D. radiodurans to drug resistance was efficient when the donor DNA was from D. radiodurans or E. coli, but was greatly reduced when the donor DNA was linearized with restriction enzymes prior to transformation. In the course of the study, a plasmid, pS16, was discovered in D. radiodurans R1, establishing that all Deinococcus strains so far examined contain plasmids.  相似文献   

11.
A new method of plasmid DNA transfer from the donor strainEscherichia coliS17-1 to the erythromycin-producing strainSaccharopolyspora erythraeaand avermectin-producing strain Streptomyces avermitilis via intergeneric conjugation was proposed. The optimal parameters of the method were chosen for increasing the efficiency of crosses and ensuring easily reproducible results. The behavior of the multicopy plasmid pPM803 and the integration vector pTO1 along with a number of new plasmids specially created by us, was examined in these strains. A new plasmid vector (pSI60) capable of integrating into the chromosome of actinomycetes at the integration site of the temperate actinophage C31 was constructed. This vector possesses unique sites convenient for cloning and may be stably maintained in exconjugants of S. avermitilis and in the model strain Streptomyces lividans.The gene encoding resistance to spectinomycin and streptomycin was cloned into the vector pSI60 in this strain. For cloning in strain Sac. erythraea, vectors pSI261–280, which integrate into the chromosome via homology with the cloned DNA and can be stably maintained in exconjugants, were constructed.  相似文献   

12.
A Rapid Chromosome-Mapping Method for Cloned Fragments of Yeast DNA   总被引:19,自引:2,他引:17  
A rapid and generally applicable method is described for mapping a cloned yeast DNA segment to the chromosome(s) from which it originated. The method is based upon the recent finding that the integration into a yeast chromosome of a segment of the 2 mu plasmid DNA results, in heterozygous diploids, in the specific loss of genetic information from the chromosome into which the 2 mu DNA was integrated (Falco et al. 1982). After verification of the accuracy of the method using several genes whose position was known in advance, the method was used to locate the yeast actin gene, which lies on the left arm of chromosome VI, about 50 cM distal to CDC4.  相似文献   

13.
An Escherichia coli strain, B-62, that was isolated from a clinical source and was epidemiologically unrelated to E. coli K-12 was the source of chromosomal DNA for a sucrose utilization system (Scr+) in the construction of a plasmid, pST621. The cloned insert of a gene encoding Scr+ in pST621 conferred a sucrose-positive phenotype onto transformed cells of E. coli K-12 derivatives. Sucrase activity of the transformants was as high as that which would correspond to a "gene dosage effect" of a vector plasmid pBR322, whereas the transformants' sucrose uptake activity was always lower than that of E. coli B-62. A region within an XhoI-SacI fragment (3.2 kb) of pBR322-glyA was replaced in the construction of another plasmid, pST5R7, by a fragment (about 2.6 kb) of pST622 containing the gene encoding Scr+. A genetically stable Scr+ derivative of E. coli K-12 was obtained by introducing the gene encoding Scr+ onto E. coli chromosome via homologous recombination between pST5R7 and the chromosome and subsequent plasmid segregation. The use of low-copy-number plasmid RP4 as a cloning vector was also effective for enhancing the stability of Scr+. Tryptophan producers E. coli SGIII1032S, in which the gene encoding Scr+ was cloned onto the chromosome, and E. coli SGIII1032, which carried Scr+ plasmid RP4.5R7, produced from 6% sucrose in shake flasks (33 degrees C, 96 h) 2.3 and 5.7 g of tryptophan per liter, respectively.  相似文献   

14.
An Escherichia coli strain, B-62, that was isolated from a clinical source and was epidemiologically unrelated to E. coli K-12 was the source of chromosomal DNA for a sucrose utilization system (Scr+) in the construction of a plasmid, pST621. The cloned insert of a gene encoding Scr+ in pST621 conferred a sucrose-positive phenotype onto transformed cells of E. coli K-12 derivatives. Sucrase activity of the transformants was as high as that which would correspond to a "gene dosage effect" of a vector plasmid pBR322, whereas the transformants' sucrose uptake activity was always lower than that of E. coli B-62. A region within an XhoI-SacI fragment (3.2 kb) of pBR322-glyA was replaced in the construction of another plasmid, pST5R7, by a fragment (about 2.6 kb) of pST622 containing the gene encoding Scr+. A genetically stable Scr+ derivative of E. coli K-12 was obtained by introducing the gene encoding Scr+ onto E. coli chromosome via homologous recombination between pST5R7 and the chromosome and subsequent plasmid segregation. The use of low-copy-number plasmid RP4 as a cloning vector was also effective for enhancing the stability of Scr+. Tryptophan producers E. coli SGIII1032S, in which the gene encoding Scr+ was cloned onto the chromosome, and E. coli SGIII1032, which carried Scr+ plasmid RP4.5R7, produced from 6% sucrose in shake flasks (33 degrees C, 96 h) 2.3 and 5.7 g of tryptophan per liter, respectively.  相似文献   

15.
A set of vectors which facilitates the sequential integration of new functions into the Escherichia coli chromosome by homologous recombination has been developed. These vectors are based on plasmids described by Posfai et al. (J. Bacteriol. 179:4426-4428, 1997) which contain conditional replicons (pSC101 or R6K), a choice of three selectable markers (ampicillin, chloramphenicol, or kanamycin), and a single FRT site. The modified vectors contain two FRT sites which bracket a modified multiple cloning region for DNA insertion. After integration, a helper plasmid expressing the flippase (FLP) recombinase allows precise in vivo excision of the replicon and the marker used for selection. Sites are also available for temporary insertion of additional functions which can be subsequently deleted with the replicon. Only the DNA inserted into the multiple cloning sites (passenger genes and homologous fragment for targeting) and a single FRT site (68 bp) remain in the chromosome after excision. The utility of these vectors was demonstrated by integrating Zymomonas mobilis genes encoding the ethanol pathway behind the native chromosomal adhE gene in strains of E. coli K-12 and E. coli B. With these vectors, a single antibiotic selection system can be used repeatedly for the successive improvement of E. coli strains with precise deletion of extraneous genes used during construction.  相似文献   

16.
A C Chinault  J Carbon 《Gene》1979,5(2):111-126
A set of four plasmids containing overlapping segments comprising a total of about 30 kbp of cloned DNA from chromosome III of yeast (Saccharomyces cerevisiae) has been isolated and characterized by restriction endonuclease analyses and DNA:DNA hybridizations. Colony hybridization was carried out with labeled pYe(leu2)10, a plasmid carrying the yeast leu2 gene, to a bank of bacterial colonies containing recombinant plasmids constructed from the vector ColE1 and random fragments of yeast DNA. This resulted in the detection of two plasmids, pYe11G4 and pYe40C3, with DNA inserts which partially overlap the original cloned segment and contain additional DNA extending in opposite directions on the chromosome. By carrying out a second round of colony hybridization with pYe40C3, the cloned region was further extended in one direction. A region of DNA that is repeated at least ten times in the yeast genome was identified by hybridization of pYe11G4 to an EcoRI digest of total yeast DNA. The procedure described in this paper should allow the isolation of large sections of chromosomes, including non-transcribed regions, surrounding cloned genes.  相似文献   

17.
A genetic approach to the molecular cloning of frameshift suppressor genes from yeast is described. These suppressors act by suppressing +1 G:C base-pair insertion mutations in glycine or proline codons. The cloning regimen involves an indirect screen for yeast transformants which harbor a functional suppressor gene inserted into the autonomously replicating “shuttle” vector YEp13, followed by transfer of the hybrid plasmid from yeast into Escherichia coli. Using this procedure a 10.7-kb DNA fragment carrying the SUF2 frameshift suppressor gene has been isolated. This suppressor acts specifically on +1 G:C insertions in proline codons. When inserted into an integrative vehicle and reintroduced into yeast by transformation, this fragment integrates by homologous recombination in the region of the SUF2 locus on chromosome III. A large proportion of the fragment overlaps with another cloned DNA segment which carries the closely linked CDC10 gene. The SUF2 fragment carries at least two tRNA genes. The SUF2 gene and one of the tRNA genes are located on a 0.85-kb restriction fragment within the 10.7-kb segment. A method is also described for the isolation of DNA fragments carrying alternative alleles of the SUF2 locus. Using this procedure, the wild-type suf2+ allele has been cloned.  相似文献   

18.
C F Ford  M M Smith 《Gene》1985,37(1-3):45-52
We have used a synthetic 17-mer to direct mutagenesis of the cloned yeast histone H3 gene HHT2, creating an amber mutation at amino acid 41. This point mutation did not alter the restriction pattern of the HHT2 gene nor was it expected to provide an easily scorable phenotype in vivo. Therefore, nucleic acid hybridization was used to detect this point mutation during strain construction. The oligonucleotide was used to probe yeast genomic Southern blots to detect integration of the plasmid bearing the mutant HHT2 gene into the genome, and then to score the eventual excision of the plasmid vector with retention of the mutant gene on the chromosome. This technique can be used to score virtually any engineered point mutations in yeast.  相似文献   

19.
The results of cloning and sequencing the gene encoding nonstructure protein of the rice dwarf virus (RDV) gtnome segment 10 with polymerase chain reaction(PCR) technique were reported. The amplified PGR product was cloned into Hind Ⅱ site of plasmid pGEM3zf(-) and analysed with restriction enzymes. The physical map of the cloned fragment has been constructed, the insert is 1150 bp in length with restriction enzyme sites of Sac Ⅰ, Hind Ⅲ, NdeⅠ, BamH Ⅰ, etc. Besides, two restriction enzyme sites Bgl Ⅱ and EcoR Ⅰ have been separetely added in the 5 and 3 end of the segment in order to be cloned into plant intermediate vector in a convenient way. The fragments cleaved by the above-mentioned restriction enzymes were subcloned and the DNA sequence of full length of segment 10 was determined. In comparison with the RDV epidemic in Japan, the nucleotide sequence and deduced amino acid sequence of cloned segment 10 are 96.03% and 97.17% in homology respectively.  相似文献   

20.
In this paper we describe the synthesis and cloning of a short segment of DNA complementary to the region immediately adjacent to the EcoRI insertion site in the single-stranded bacteriophage vector M13mp2. This segment is useful as a "universal" primer for DNA sequencing by the dideoxynucleotide chain termination method; the template can be any DNA species cloned in M13mp2 or its derivatives. The primer has been cloned into the tetracycline resistance gene of plasmid pBR322 as one strand of a 26 bp EcoRI/BamHI fragment. This fragment may be readily prepared from an EcoRI + BamHI restriction digest of the parent plasmid (designated pSP14) by a simple size fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号