首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The acquisition of adequate quantities of nitrogen is a challenge for herbivorous vertebrates because many plants are in low nitrogen and contain secondary metabolites that reduce nitrogen digestibility. To investigate whether herbivores maintain nitrogen balance on plant diets low in nitrogen and high in secondary compounds, we studied the effect of juniper (Juniperus monosperma) ingestion on the nitrogen balance of two species of herbivorous woodrats (Neotoma stephensi and N. albigula). These woodrat species feed on the foliage of juniper: N. stephensi is a juniper specialist, whereas N. albigula is a generalist that incorporates some juniper in its diet. Based on the nitrogen contents of the natural diets of these woodrats, we predicted that the generalist would be in negative nitrogen balance on a juniper diet whereas the specialist would not be affected. We found that both species of woodrat had low-nitrogen requirements (334.2 mg N/kg0.75/day) and that a diet of 50% juniper did not result in negative nitrogen balance for either species. However, excretion patterns of nitrogen were altered; on the 50% juniper diet, fecal nitrogen losses increased ~38% and urinary nitrogen losses were half that of the control diet. The results suggest that absorption and detoxification of juniper secondary compounds may be more important for restricting juniper intake by the generalist than nitrogen imbalance.  相似文献   

2.
3.
植物内生菌及其次级代谢产物的研究进展   总被引:3,自引:0,他引:3  
植物内生菌经过与寄主植物长期的协同进化,成为植物内生态系统的重要组成部分,在植物的生长发育、营养吸收、胁迫应激以及产生次级代谢产物等生理生化行为方面具有显著的作用。利用植物内生菌及其次级代谢产物,可以促进农作物的生长发育、提高抗逆性,对于农业生产具有重大的研究意义和应用价值。综述了植物内生菌及其次级代谢产物生理功能及在农业生产中应用的研究进展。对植物内生菌及其次级代谢产物未来的研究重点和应用前景做出展望。  相似文献   

4.
It has already been demonstrated that the adaptation of intestinal calcium absorption of rats on a low calcium diet can be eliminated by thyroparathyroidectomy plus parathyroid hormone administration. This treatment elevates intestinal and plasma levels of 1,25-dihydroxyvitamin D3 in rats on a high calcium diet while producing no change in rats on a low calcium diet. It therefore appears likely that the modulation of intestinal calcium absorption by dietary calcium is mediated by the parathyroid glands and the renal biogenesis of 1,25-dihydroxyvitamin D3. Changes in the other unknown vitamin D metabolite levels as a result of dietary calcium are also modified by thyroparathyroidectomy and parathyroid hormone administration, but the effect of these metabolites on intestinal calcium transport is unknown.  相似文献   

5.
Genotyping faeces links individuals to their diet   总被引:2,自引:0,他引:2  
The detection of individual variation in foraging behaviour within wild mammal populations requires large sample sizes and relies on the multifold re-sampling of individuals. However, limits for observational studies are posed by the rarity and nocturnal or otherwise elusive habits of many mammals. We propose that the detection of foraging variation within populations of mammals may be facilitated if conventional diet analysis from faeces is combined with DNA-based individual identification methods using "genetic fingerprinting" from faeces. We applied our approach to a coyote ( Canis latrans ) population, and showed how individuals may vary from one another in their diet profiles. Two main groups of coyotes were distinguished on the basis of their relative use of small mammals and "other vertebrates" as primary food sources, and these two groups were further subdivided on the basis of their relative use of "other vertebrates" and fruit as secondary food sources. We show that, unless a faecal sampling scheme is used that maximizes the number of different individuals included in a survey, individual foraging variation that is left unaccounted for may result in downwardly biased faecal diet diversity estimates. Our approach allows the re-sampling of individuals over time and space, and thus may be generally useful for the testing of optimal foraging theory hypotheses in mammals and also has conservation applications.  相似文献   

6.
Within our lakes, streams, estuaries, and oceans, there is an astounding chemodiversity of secondary metabolites produced by microbes, algae, and invertebrates. Nearly 30 years of study have yielded hundreds of examples in which secondary metabolites alter the foraging behavior or fitness of aquatic consumers, or both. However, our understanding of the mechanisms that mediate the fate and consequences of these metabolites in aquatic consumers remains in its infancy. Interactions between metabolites and consumers at the molecular and biochemical level are the purview of modern pharmacology, which is rooted in the long history of human-drug interactions and can be adopted for ecological studies. Here, we argue that a pharmacological approach to consumer-prey interactions will be as productive within aquatic systems as it has been for understanding terrestrial systems. We review the diversity of secondary metabolites in aquatic organisms, their known effects on the feeding behaviors and performance of aquatic consumers, and the few studies that have attempted to describe their biochemical manipulation within consumer tissues, i.e., their absorption, distribution, metabolism (including detoxification), and excretion. We then highlight vexing issues in the ecology and evolution of aquatic consumer-prey interactions that would benefit from a pharmacological approach, including specialist-versus-generalist feeding strategies, dietary mixing, nutrient-toxin interactions, and taste. Finally, we argue that a pharmacological approach could help to predict how consumer-prey interactions are altered by global changes in pH, water temperature and ultraviolet radiation, or by pollution. Arguably, the state of knowledge of aquatic consumer-prey interactions is equivalent to that faced by ecologists studying terrestrial herbivores in the 1970s; the literature documents profound variation among consumers in their feeding tolerances for secondary metabolites without a thorough understanding of the mechanisms that underlie that variation. The subsequent advancement in our understanding of terrestrial herbivores in the intervening decades provides confidence that applying a pharmacological approach to aquatic consumers will prove equally productive.  相似文献   

7.
Polyphagous insect herbivores are adapted to many different secondary metabolites of their host plants. However, little is known about the role of ATP-binding cassette (ABC) transporters, a multigene family involved in detoxification processes. To study the larval response of the generalist Helicoverpa armigera (Lepidoptera) and the putative role of ABC transporters, we performed developmental assays on artificial diet supplemented with secondary metabolites from host plants (atropine-scopolamine, nicotine and tomatine) and non-host plants (taxol) in combination with a replicated RNAseq experiment. A maximum likelihood phylogeny identified the subfamily affiliations of the ABC transporter sequences. Larval performance was equal on the atropine-scopolamine diet and the tomatine diet. For the latter we could identify a treatment-specific upregulation of five ABC transporters in the gut. No significant developmental difference was detected between larvae fed on nicotine or taxol. This was also mirrored in the upregulation of five ABC transporters when fed on either of the two diets. The highest number of differentially expressed genes was recorded in the gut samples in response to feeding on secondary metabolites. Our results are consistent with the expectation of a general detoxification response in a polyphagous herbivore. This is the first study to characterize the multigene family of ABC transporters and identify gene expression changes across different developmental stages and tissues, as well as the impact of secondary metabolites in the agricultural pest H. armigera.  相似文献   

8.
Many sea hares (Opisthobranchia, Anaspidea) sequester secondary metabolites from their algal diets. Tests of the hypothesis that sequestered metabolites deter predators have yielded ambiguous results. We manipulated secondary metabolites in vivo by collecting the sea hare Stylocheilus striatus from different host algae, and by raising it in the laboratory on artificial diets containing or lacking secondary metabolites (malyngamides A and B). Sea hares were then offered to fish. Fish identity affected vulnerability of sea hares to predation far more than did diet history. Wrasses and bream ate most sea hares tasted; damselfishes, goatfishes, and other fishes rejected most. Diet history affected vulnerability of sea hares to wrasses in one of four experiments, and if data from all experiments were pooled, but the effect was modest. Diet history did not affect vulnerability of sea hares to other fish taxa. Despite several studies, evidence for diet-derived defenses against predators in sea hares remains equivocal.  相似文献   

9.
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1–3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds.Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.  相似文献   

10.
Phenylketonuria and severe focal scleroderma were observed in a white male child. This is the first instance in which the association of these two rare disorders has been reported. Studies carried out on this patient provide a possible explanation for the abnormalities of indole metabolism in phenylketonuria. On an unrestricted diet, when serum phenylalanine levels were elevated, excessive urinary excretion of indolic tryptophan metabolites was seen 18-24 hours after oral tryptophan loading, and tryptophan was demonstrable in the stool. This was not observed when the serum phenylalanine was within normal limits on a low phenylalanine diet. Impaired intestinal tryptophan absorption secondary to elevated serum phenylalanine, by providing tryptophan substrate for bacterial degradation to indolic compounds which are absorbed and excreted in the urine, may partially explain the abnormalities of indole metabolism in phenylketonuria.  相似文献   

11.
Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.  相似文献   

12.
Although fleshy fruits function primarily to attract seed dispersers, many animal‐dispersed fruits contain potentially toxic secondary metabolites. These metabolites can provide defense against seed predators and pathogens, but their effects on dispersers are still poorly understood. In some cases plants may experience a tradeoff, where the metabolites that provide fruit defense also reduce seed disperser preferences. In other cases the bioactivity of fruit secondary metabolites may be directed primarily at pests with no negative effects on seed‐dispersing vertebrates. We tested the effects of amides, a group of nitrogen‐based defensive compounds common in the plant genus Piper (Piperaceae), in interactions with the primary seed dispersers of Piper in the neotropics – fruit‐feeding bats in the genus Carollia (Phyllostomidae). In a series of flight cage experiments, pure amides and amide‐rich fruit extracts reduced the preferences of bats for Piper fruit, affecting both the bats’ initial choices to remove Piper infructescences and the proportion of fruit consumed from individual infructescences once they were removed. However, the effects of amides varied considerably among three species of Carollia and among the specific individual amides and extracts tested. Overall, our results support the hypothesis that plants experience a tradeoff between seed dispersal and fruit defense, but the strength of this tradeoff and the overall fitness consequences may depend strongly on ecological context.  相似文献   

13.
Clavicipitaceous fungi of the genus Neotyphodium occur widely as mutualistic, systemic, seed‐borne infections in festucoid grasses. Grass infection by these fungi is associated with the presence of a range of secondary metabolites (SM), several of which have been demonstrated to confer to the plant resistance against herbivorous vertebrates and insects. An initial experiment demonstrated that endophytic infection by Neotyphodium can influence the utilisation of grasses by Deroceras, with feeding preferences and impact on plant yields affected differentially by endophytes with different SM profiles. The role of Neotyphodium SM in feeding preferences of Deroceras slugs were then evaluated in artificial diets. Among the indole diterpenoids tested, lolitrem B was demonstrated to reduce feeding, while diets containing paxilline, lolitriol, α‐paxitriol and β‐paxitriol tended to be preferred over that of untreated diet. The pyrrolopyrazine alkaloid peramine had no effect. Among the ergopeptine alkaloids tested in the diets, ergotamine and ergovaline were demonstrated to be phagostimulatory. These results with artificial diets were generally consistent with Deroceras reticulatum preferences among plants of known Neotyphodium endophyte strain and SM profile. Deroceras slugs obtained from sites containing contrasting frequencies of Neotyphodium‐infected grasses, exhibited differential responses to Neotyphodium SM incorporated into artificial diet. This study demonstrates that infection of grasses by different isolates of Neotyphodium endophytes differentially influence herbivory by molluscs, reflecting their SM profile. These results offer an explanation for variable acceptability of grasses to molluscs and their importance in the diet of molluscs in the field reported in previous studies in both natural and agricultural systems. Neotyphodium endophytes potentially offer novel approaches to management of mollusc pests in agricultural gramineous crops.  相似文献   

14.
Secondary metabolites are one the most pervasive defensive mechanisms in plants. Many specialist herbivores have evolved adaptations to overcome these defensive compounds. Some herbivores can even take advantage of these compounds by sequestering them for protection and/or mate attraction. One of the most studied specialist insects that sequesters secondary metabolites is the arctiid moth Utetheisa ornatrix. This species sequesters pyrrolizidine alkaloids (PAs) from its host plant, the legume Crotalaria spp. The sequestered PAs are used as a predator repellent and as a mating pheromone. We used this species to test larval preference for different concentrations of PAs. We purified PAs from plant material and added them at different concentrations to an artificial diet. Larvae of U. ornatrix previously feeding on low and high PA concentration artificial diets were allowed to choose between two new artificial diets with different PA concentrations. The amount of PAs sequestered and larval preference were dependent on their previous exposure to low or high PA content in the diet. Larvae that were pretreated with a low PA diet significantly consumed more diet with the high PA concentration, while larvae that were pretreated with a high PA diet showed no discrimination between future feeding of different PA concentration diets. We discuss our results using mechanistic and evolutionary approaches. Finally, we discuss how these results have important implications on the evolution of plant herbivore interactions and how specialist herbivores may decrease the levels of chemical defenses on plant populations.  相似文献   

15.
Summary Chemical protection plays a decisive role in the resistance of plants against pathogens and herbivores. The so-called secondary metabolites, which are a characteristic feature of plants, are especially important and can protect plants against a wide variety of microorganisms (viruses, bacteria, fungi) and herbivores (arthropods, vertebrates). As is the situation with all defense systems of plants and animals, a few specialized pathogens have evolved in plants and have overcome the chemical defense barrier. Furthermore, they are often attracted by a given plant toxin. During domestication of our crop and food plants secondary metabolites have sometimes been eliminated. Taking lupins as an example, it is illustrated that quinolizidine alkaloids are important as chemical defense compounds and that the alkaloid-free varieties (sweet lupins), which have been selected by plant breeders, are highly susceptible to a wide range of herbivores to which the alkaloid-rich wild types were resistant. The potential of secondary metabolites for plant breeding and agriculture is discussed.  相似文献   

16.
核糖体工程(ribosome engineering)是一项利用靶点位于细菌RNA聚合酶及核糖体功能因子的抗生素诱导细菌产生抗性突变,进而提升菌株次级代谢生产潜能的技术.该方法无需依赖菌株完善的遗传操作体系,可应用于发掘几乎所有放线菌菌株中潜在的宝贵活性次级代谢产物,并广泛应用于放线菌基因组挖掘和次级代谢产物增产优化....  相似文献   

17.
Root-knot nematodes are destructive phytopathogens that damage agricultural crops globally, and there is growing interest in the use of biocontrol based on rhizobacteria such as Bacillus to combat Meloidogyne species. It is hypothesized that nematicidal activity of Bacillus can be attributed to the production of secondary metabolites and hydrolytic enzymes. Yet, few studies have characterized these metabolites and their identities remain unknown. Others are speculative or fail to elaborate on how secondary metabolites were detected or distinguished from primary metabolites. Metabolites can be classified based on their origin as either intracellular or extracellular and based on their function, as either primary or secondary. Although this classification is in general use, the boundaries are not always well defined. An understanding of the secondary metabolite and hydrolytic enzyme classification of Bacillus species will facilitate investigations aimed at bionematicide development. This review summarizes the significance of Bacillus hydrolytic enzymes and secondary metabolites in bionematicide research and provides an overview of known classifications. The importance of appropriate cultivation conditions for optimum metabolite and enzyme production is also discussed. Finally, the use of metabolomics for the detection and identification of nematicidal compounds is considered.  相似文献   

18.
Plant cell cultivations are being considered as an alternative to agricultural processes for producing valuable phytochemicals. Since many of these products (secondary metabolites) are obtained by direct extraction from plants grown in natural habitat, several factors can alter their yield. The use of plant cell cultures has overcome several inconveniences for the production of these secondary metabolites. Organized cultures, and especially root cultures, can make a significant contribution in the production of secondary metabolites. Most of the research efforts that use differentiated cultures instead of cell suspension cultures have focused on transformed (hairy) roots. Agrobacterium rhizogenes causes hairy root disease in plants. The neoplastic (cancerous) roots produced by A. rhizogenes infection are characterized by high growth rate, genetic stability and growth in hormone free media. These genetically transformed root cultures can produce levels of secondary metabolites comparable to that of intact plants. Hairy root cultures offer promise for high production and productivity of valuable secondary metabolites (used as pharmaceuticals, pigments and flavors) in many plants. The main constraint for commercial exploitation of hairy root cultivations is the development and scaling up of appropriate reactor vessels (bioreactors) that permit the growth of interconnected tissues normally unevenly distributed throughout the vessel. Emphasis has focused on designing appropriate bioreactors suitable to culture the delicate and sensitive plant hairy roots. Recent reactors used for mass production of hairy roots can roughly be divided as liquid-phase, gas-phase, or hybrid reactors. The present review highlights the nature, applications, perspectives and scale up of hairy root cultures for the production of valuable secondary metabolites.  相似文献   

19.
Naringenin, the predominant flavanone in grapefruit, mainly occurs as glycosides such as naringenin-7- rhamnoglucoside or naringenin-7-glucoside. This study compared kinetics of absorption of naringenin and its glycosides in rats either after a single flavanone-containing meal or after adaptation to a diet for 14 days. Regardless of the diet, circulating metabolites were glucurono- and sulfoconjugated derivatives of naringenin. The kinetics of absorption of naringenin and naringenin-7-glucoside were similar, whereas naringenin-7-rhamnoglucoside exhibited a delay in its intestinal absorption, resulting in decreased bioavailability. After naringenin-7-glucoside feeding, no glucoside was found in the cecum. However, after feeding naringenin-7-rhamnoglucoside, some naringenin-7-rhamnoglucoside accumulated in cecum before being hydrolyzed by intestinal microflora. Adaptation to flavanone diets did not induce accumulation of plasma naringenin. Moreover, flavanone cecal content markedly decreased after adaptation, and almost no naringenin-7-rhamnoglucoside was recovered after naringenin-7-rhamnoglucoside feeding, suggesting that an adaptation of cecal microflora had occurred. Overall, these data indicate that flavanones are efficiently absorbed after feeding to rats and that their bioavailability is related to their glycosidic moiety.  相似文献   

20.
The secondary metabolites that play a defensive role in plants not only affect the growth and development of herbivores, but they can also influence their natural enemies. In the present study, the effect of coumarin was evaluated on a braconid parasitoid, Bracon hebetor (Say) (Hymenoptera: Braconidae) using polyphagous pest, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Reproductive potential of the parasitoid declined significantly due to parasitization of host larvae feeding on coumarin supplemented diet. Total development period of B. hebetor extended significantly (2.17–2.38 days) when the host larvae were reared on diet amended with higher concentrations (625–3,125 parts per million) of coumarin as compared to unamended diet. Ingestion of coumarin supplemented diet by S. litura adversely affected the emergence and parasitization potential of B. hebetor. As compared to the control a significant decline in hatching of eggs was recorded when parasitoid wasps developed on host larvae fed on diet containing higher concentrations of coumarin (625–3,125 ppm). Negative effects of coumarin were also recorded from the next generation of the parasitoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号