首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The reactions of chloroacetaldehyde with adenosine 3′,5′-cyclic phosphate, and with several analogs modified at C8 of the purine ring or C5, of the sugar, lead to the corresponding 1,N6-etheno derivativesd. Similar reactions using other 2-bromoaldehydes or phenacyl bromide give 1,N6-ethenonucleotides substituted at the α- or β-positions of the etheno bridge respectively. The ability of these compounds to activate the protein kinases from rabbit muscle and calf brain has been evaluated over a wide range of concentrations. While no derivative proved to be more active than adenosine 3′,5′-cyclic phosphate itself using the enzyme from rabbit muscle, a wide spectrum of activities was found using that from calf brain.  相似文献   

3.
Rat liver nuclei contain at least two DNA polymerases that can be separated by extracting the nuclei with 5% Brij 58. The loosely-bound activity increases little or not at all after partial hepatectomy and is insensitive to cytosine arabinoside triphosphate (araCTP). The tightly-bound enzyme activity rises along with DNA replication and is inhibited by araCTP.  相似文献   

4.
5.
6.
2'-O-Chloroacetyl cyclic AMP, 2'-O-acrylyl cyclic AMP and N-6, 2'-O-diacrylyl cyclic AMP were synthesized by the reaction of cyclic AMP with chloroacetic and acrylic anhydrides, respectively. Selective O-deacylation of N-6, 2'-O-diacrylyl cyclic AMP yielded N-6 -monoacrylyl cyclic AMP. In the reaction of gamma-mercaptobutyric acid with 8-bromo cyclic AMP, 8-(gamma-carboxypropylthio) cyclic AMP was obtained. The compounds synthesized and other cyclic AMP analogues (8-bromo cyclic AMP and adenosine 3', 5'-cyclic sulphate) were tested for ability to interact with the highly purified pig brain histone kinase. All compounds under study were found to be activators of the enzyme. The highest activating potency was manifested by 8-bromo cyclic AMP and 8-(gamma-carboxypropylthio) cyclic AMP; adenosine 3', 5'-cyclic sulphate was the least potent in this respect. All compounds were shown to inhibit binding of cyclic [-3-H]AMP to histone kinase. The inhibition was competitive with respect to cyclic AMP in all cases. All compounds, except for 2'-O-chloroacetyl cyclic AMP may indicate the formation of a covalent bond between this analogue and the enzyme. These findings suggest that an active site of the regulatory subunit of the histone kinase contains at least three specific areas responsible for cyclic AMP binding.  相似文献   

7.
8.
9.
10.
11.
Uridine-3'-phosphorothiolate triesters bearing lipophilic moieties were prepared via Michaelis-Arbuzov chemistry. Subsequent deprotection of the S-cholesteryl phosphorothiolate triester afforded the corresponding diester which underwent spontaneous Cyclization to cleanly afford uridine 2',3'-cyclic phosphate. This transesterification reaction could be expedited by treatment with iodine under mild, neutral conditions.  相似文献   

12.
On the basis of calculations of conformational states of cytidine 2',3'-cyclic phosphate it is shown that the syn-form with a gauche-trans position of the exocyclic group C(5')H2OH is preferential.  相似文献   

13.
cCMP-specific phosphodiesterase activity was demonstrated in the 80 to 100% ammonium sulfate fraction obtained from disrupted leukemia L-1210 cells. The activity was linear with time (up to 60 min), was a function of protein concentration, and was markedly stimulated by Mg2+ and by ammonium sulfate. Under identical assay conditions, no significant hydrolysis of cAMP or cGMP was observed, although these cyclic nucleotides served as substrates for phosphodiesterase(s) present in all the fractions obtained by less than 80% ammonium sulfate saturation. This is the first demonstration of a cCMP-specific phosphodiesterase.  相似文献   

14.
15.
16.
17.
3':5'-Cyclic nucleotide phosphodiesterase was isolated from human brain and characterized. After the first stage of purification on phenyl-Sepharose, the enzyme activity was stimulated by Ca2+ and micromolar concentrations of cGMP. High pressure liquid chromatography on a DEAE-TSK-3SW column permitted to identify three ranges of enzymatic activity designated as PDE I, PDE II and PDE III. Neither of the three enzymes possessed a high selectivity for cAMP and cGMP substrates. The catalytic activity of PDE I and PDE II increased in the presence of Ca2+-calmodulin (up to 6-fold); the degradation of cAMP was decreased by cGMP. The Ca2+-calmodulin stimulated PDE I and PDE II activity was decreased by W-7. PDE I and PDE II can thus be classified as Ca2+-calmodulin-dependent phosphodiesterases. With cAMP as substrate, the PDE III activity increased in the presence of micromolar concentrations of cGMP (up to 10-fold), Ca2+ and endogenous calmodulin (up to 2-3-fold). No additivity in the effects of saturating concentrations of these compounds on PDE III was observed. Ca2+ did not influence the rate of cGMP hydrolysis catalyzed by PDE III. In comparison with PDE I and PDE II, the inhibition of PDE III was observed at higher concentrations of W-7 and was not limited by the basal level of the enzyme. These results do not provide any evidence in favour of the existence of several forms of the enzyme in the PDE III fraction. The double regulation of PDE III creates some difficulties for its classification.  相似文献   

18.
19.
20.
Exogenous cGMP can inhibit both basal and glucagon-stimulated production of glucose in liver slices from fed rats. Thus, cAMP and cGMP have opposite effects on the production of glucose in rat liver. Acetylcholine, an activator of guanylate cyclase (EC 4.6.1.2) in other systems, also inhibits the glucagon-stimulated production of glucose. No effect on glucose production was observed with secretin or exogenous GTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号