首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation resistance of Escherichia coli cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recF, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB1157 and highly radiation-resistant isogenic strain Gamr444. An optimal balance ensuring a high γ resistance of the Gamr444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II.  相似文献   

2.
3.
4.
Paraquat induced the SOS response in Escherichia coli. This was measured in terms of acquired resistance towards UV lethality in a wild-type strain and in terms of appearance of beta-galactosidase activity in a din::Mu d(Ap lac) fusion strain. However measured, the induction of the SOS response by paraquat was entirely dioxygen-dependent; whereas induction of the SOS response by mitomycin C was independent of the presence of dioxygen. As expected, recA(Def) and lexA(Ind-) isogenic strains did not show the SOS response. It appears likely that O-2, whose intracellular production is increased by paraquat, leads to DNA damage which in turn induces the SOS response.  相似文献   

5.
The UV radiation survival of several Escherichia coli K12 strains was measured after pretreatment of the cells with dithiothreitol (DTT). In DNA repair-competent cells (AB1157), UV survival was enhanced (ER = 1.2) after pretreating cells for 1.0 h using 10 mmol dm-3 DTT and then incubating the cells for 1.5 h in buffer before UV irradiation. Similar experiments using the excision repair mutant, AB1886uvrA6, or the recombination repair and SOS-deficient mutant, AB2462recA, strains did not show enhanced UV survival. None of the E. coli strains tested were protected against UV killing by simultaneous treatment with DTT (10 mmol dm-3). These results, and the fact that incubation in chloramphenicol removed the wild-type response in DTT-pretreated, UV-irradiated cells, suggest that the observed UV radioprotection was a result of inducible enzymatic repair processes such as recA-dependent repair. The proposed stimulus for inducible repair in these cells is DNA damage caused by intracellular hydroxyl radicals arising from thiol oxidation. The involvement of oxygen radicals in the induction pathway is supported by results that showed superoxide dismutase and catalase could inhibit a portion (one-third) of the inducible repair.  相似文献   

6.
Summary Mutagenic repair in Escherichia coli after ultraviolet (UV) irradiation has previously been shown to require a function of DNA polymerase III. In contrast, no effect of incubating a polC temperature-sensitive strain at 42° has been found after gamma irradiation. Thus at present there is no direct evidence for the involvement of polymerase III in gamma ray mutagenesis. This could, however, merely reflect the stability of the premutational lesion during the period of polymerase III insufficiency such that mutagenic repair is resumed on the plate during subsequent incubation at permissive temperature.It was previously suggested that an inducible factor might interact with polymerase III to enable it to polymerise in an error-prone way in daughter strand gaps opposite non-coding lesions in the template strand. A temperature-resistant revertant (CM 792) of a temperature-sensitive polC strain (CM 731) has been isolated which has properties expected of a strain in which the polymerase III complex is no longer susceptible to the inducible co-factor. Its UV sensitivity, spontaneous mutation rate and mutagenic response to ethyl methanesulphonate are all normal or near normal, also the rates of mutation to prototrophy after gamma irradiation and to streptomycin resistance after UV. These latter mutations are believed to arise through constitutive mutagenic repair at sites in pre-existing DNA. In contrast, the rate of UV-induced mutation to prototrophy due to changes at ochre suppressor loci is greatly depressed and no Weigle-reactivation of bacteriophage T3 is observable; both these effects are believed to result from the action of inducible mutagenic repair in newly-replicated DNA. It is suggested that the 3 to 5 exnnuclease activity of the polymerase III complex in CM 792 may not be susceptible to inhibition by an inducible factor and so continues to remove mismatched bases inserted in newly-replicated DNA opposite damage template sites thus preventing the fixation of errors as mutations.  相似文献   

7.
H Masai  T Asai  Y Kubota  K Arai    T Kogoma 《The EMBO journal》1994,13(22):5338-5345
Under certain conditions, Escherichia coli cells exhibit either of two altered modes of chromosomal DNA replication. These are inducible stable DNA replication (iSDR), seen in SOS-induced cells, and constitutive stable DNA replication (cSDR), seen in rnhA mutants. Both iSDR and cSDR can continue to occur in the absence of protein synthesis. They are dependent on RecA protein, but do not require DnaA protein or the oriC site. Here we report the requirement for PriA, a protein essential for assembly of the phi X174-type primosome, for both iSDR and cSDR. In priA1(Null)::kan mutant cells, iSDR is not observed after induction by thymine starvation. Replication from one of the origins (oriM1) specific to iSDR is greatly reduced by the priA1::kan mutation. cSDR in rnhA224 mutant cells deficient in RNase HI is also completely abolished by the same priA mutation. In both cases, SDR is restored by introduction of a plasmid carrying a wild-type priA gene. Furthermore, the viability of an rnhA::cat dnaA46 strain is lost at 42 degrees C upon inactivation of the priA gene, indicating the lethal effect of priA inactivation on those cells whose viability depends on cSDR. These results demonstrate that a function of PriA protein is essential for iSDR and cSDR and suggest the involvement of the PriA-dependent phi X174-type primosome in these DnaA/oriC-independent pathways of chromosome replication. Whereas ColE1-type plasmids, known to be independent of DnaA, absolutely require PriA function for replication, DnaA-dependent plasmid replicons such as pSC101, F, R6K, Rts1 and RK2 are able to transform and to be maintained in the priA1::kan strain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Ultraviolet (UV) light is a major cause of stress, mutation, and mortality in microorganisms, causing numerous forms of cellular damage. Nevertheless, there is tremendous variation within and among bacterial species in their sensitivity to UV light. We investigated direct and correlated responses to selection during exposure to UV. Replicate lines of Escherichia coli K12 were propagated for 600 generations, half with UV and half as a control without UV. All lines responded to selection, and we found strong positive and negative correlated responses to selection associated with increased UV resistance. Compared to Control populations, UV-selected populations increased in desiccation and starvation resistance approximately twofold but were 10 times more sensitive to hypersalinity. There was little evidence for a persistent large competitive fitness cost to UV resistance. These results suggest that natural variation in UV resistance may be maintained by trade-offs for resistance to other abiotic sources of mortality. We observed an average twofold increase in cell size by the UV-selected populations, consistent with a structural mode of adaptation to UV exposure having preadaptive and maladaptive consequences to other abiotic stresses.  相似文献   

9.
Escherichia coli ras locus: its involvement in radiation repair   总被引:2,自引:3,他引:2       下载免费PDF全文
There are several classes of Escherichia coli mutants defective in radiation repair. These include strains defective in pyrimidine dimer excision, in photoreactivation, in recombination, in repair of X-ray damage, and ultraviolet (UV)-conditional mutants which do not divide after UV. Another mutant (ras(-)) has been isolated. The ras(-) has increased UV sensitivity, but only slightly increased X-ray sensitivity (1.5-fold increase). Ability to effect genetic recombination, to reactivate irradiated bacteriophage T1, and to be photoreactivated is normal. UV-induced mutation frequency is greatly increased in the mutant. The ras(-) apparently lacks the ability to repair some UV damage in the bacterial cell but can repair UV damage to bacteriophage DNA. The ras locus is located between lac and purE on the chromosome map.  相似文献   

10.
Incubation of E. coli WP2 in the presence of chloramphenicol (CAP) for 90 min before and 60 min after γ-irradiation had no effect on the induction of Trp+ mutations. Bacteria that had been treated with CAP for 90 min prior to UV irradiation showed normal or near normal yields of induced mutations to streptomycin or colicin E2 resistance. Most of these mutations lost their photoreversibility (indicating “fixation”) during continued incubation with CAP for a further 60 min after irradiation, during which time neither protein nor DNA synthesis was detectable. It is suggested that CAP-sensitive protein synthesis is not required for mutagenic (error-prone) repair of lesions in pre-existing DNA, arguing against an inducible component in this repair.In contrast the frequency of UV-induced mutations to Trp+ (largely at suppressor loci) was drastically reduced by CAP pretreatment, confirming the need for an active replication fork for UV-mutagenesis at these loci. It is known from the work of others that CAP given after UV abolishes mutagenesis at these loci. We conclude that CAP-sensitive protein synthesis (consistent with a requirement for an inducible function) is necessary for mutagenic repair only in newly-replicated DNA (presumably at daughter strand gaps) and not in pre-existing DNA. The data are consistent with but do not prove the hypothesis that CAP-sensitive and insensitive modes of mutagenesis reflect minor differences in the operation of a single basic mutagenic repair system.  相似文献   

11.
ATP independent excision repair of UV damage has been studied in E. coli made permeable to nucleotides by treatment with toluene. In using this system, separation of the first step from the subsequent steps in the repair process is achieved. It was found that completion of repair is observed only in strains that have normal levels of DNA polymerase I.  相似文献   

12.
Inhibition of DNA replication with hydroxyurea during thymine starvation of Escherichia coli shows that active DNA synthesis is not required for thymineless death (TLD). Hydroxyurea experiments and thymine starvation of lexA3 and uvrA DNA repair mutants rule out unbalanced growth, the SOS response, and nucleotide excision repair as explanations for TLD.  相似文献   

13.
Role of DNA polymerase II in repair replication in Escherichia coli   总被引:11,自引:0,他引:11  
  相似文献   

14.
15.
P L Moreau 《Biochimie》1985,67(3-4):353-356
The RecA protein of Escherichia coli plays a central role in DNA repair mechanisms. When it is incubated with single-stranded DNA and a nucleoside triphosphate, the purified RecA protein acts both by promoting cleavage of the LexA protein, the repressor of the SOS genes, and by catalyzing strand exchange between a variety of DNA molecules. A model for the regulation of the activity of the RecA protein in a cell exposed to a DNA damaging treatment is proposed.  相似文献   

16.
Mutagenesis at 3,N4-ethenocytosine (epsilonC), a nonpairing mutagenic lesion, is significantly enhanced in Escherichia coli cells pretreated with UV, alkylating agents, or H2O2. This effect, termed UVM (for UV modulation of mutagenesis), is distinct from known DNA damage-inducible responses, such as the SOS response, the adaptive response to alkylating agents, or the oxyR-mediated response to oxidative agents. Here, we have addressed the hypothesis that UVM results from transient depletion of a mismatch repair activity that normally acts to reduce mutagenesis. To test whether the loss of mismatch repair activities results in the predicted constitutive UVM phenotype, E. coli cells defective for methyl-directed mismatch repair, for very-short-patch repair, or for the N-glycosylase activities MutY and MutM were treated with the UVM-inducing agent 1-methyl-3-nitro-1-nitrosoguanidine, with subsequent transfection of M13 viral single-stranded DNA bearing a site-specific epsilonC lesion. Survival of the M13 DNA was measured as transfection efficiency, and mutation fixation at the lesion was characterized by multiplex sequencing technology. The results showed normal UVM induction patterns in all the repair-defective strains tested. In addition, normal UVM induction was observed in cells overexpressing MutH, MutL, or MutS. All strains displayed UVM reactivation, the term used to describe the increased survival of epsilonC-containing DNA in UVM-induced cells. Taken together, these results indicate that the UVM response is independent of known mismatch repair systems in E. coli and may thus represent a previously unrecognized misrepair or misreplication pathway.  相似文献   

17.
Summary A large (>250 kb) conjugative plasmid, pMER610, specifying resistance to tellurium and mercury was isolated from an Alcaligenes strain and transferred by conjugation to Escherichia coli AB1157. The acquisition of pMER610 by AB1157 increased the resistance to both tellurite and tellurate by 100-fold. Expression of tellurite resistance by pMER610 and the cloned Ter determinant was inducible by prior exposure to tellurite at levels sub-toxic to the sesitive AB1157. Physical analysis of the cloned Ter fragment located the resistance determinant to a 3.55 kb region. Insertion of Tn 1000 () into this region produced two classes of sensitive mutations, fully sensitive and intermediate or hyposensitive, which map in adjacent regions and form two complementation groups. Maxicell analysis identified four polypeptides (15.5, 22, 23 and 41 kDa) expressed by the Ter clone. The 23 kDa polypeptide may not be required for resistance since tellurium-sensitive insertion mutations were not detected in the 23 kDa coding region.  相似文献   

18.
A genomic DNA library of Deinococcus radiodurans DNA has been prepared using the plasmid vector pBR322. The recombinant plasmid was used to transform a more radiation-sensitive organism, Escherichia coli RR1. Following selection of transformed organisms by their ability to grow on ampicillin, radiation-resistant organisms were selected by irradiation with 137Cs gamma radiation. Increased radiation resistance correlates with the presence of a 3-kb fragment of DNA in these cells which is derived from D. radiodurans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号