首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant populations may have evolved different demographic strategies to cope with temporal environmental variation. According to the demographic buffering hypothesis, vital rates that are most critical to population persistence are buffered against environmental variation and vary little over time, whereas the demographic lability hypothesis suggests that populations may track and benefit from environmental variation. While the hypotheses of demographic strategies have been widely tested in plant and animal species, they have not been explicitly examined for invasive plants, or in relation to different modelling methods (deterministic vs. stochastic). Here, we tested the demographic buffering and lability hypotheses for 23 populations of eight invasive plant species in relation to life form (woody vs. herbaceous species) and population growth rate using deterministic and stochastic modelling methods, and absolute and relative scales. We found that conclusions of demographic strategies depended on scale, with an absolute scale resulting in stronger negative correlations between the variability and importance of vital rates (i.e., buffering) than a relative scale. Conclusions of demographic strategies were also affected by life form that interacted with method. The populations of woody invaders exhibited buffering regardless of the method used, while for the populations of herbaceous species, deterministic calculations suggested buffering and stochastic calculations suggested lability. Overall, our findings emphasise the role of life form and methodological issues that need to be considered when exploring demographic strategies in fluctuating environments.  相似文献   

2.
Populations of Afro‐Palearctic migrant birds have shown severe declines in recent decades. To identify the causes of these declines, accurate measures of both demographic rates (seasonal productivity, apparent survival, immigration) and environmental parameters will allow conservation and research actions to be targeted effectively. We used detailed observations of marked breeding birds from a ‘stronghold’ population of whinchats Saxicola rubetra in England (stable against the declining European trend) to reveal both on‐site and external mechanisms that contribute to population change. From field data, a population model was developed based on demographic rates from 2011 to 2014. Observed population trends were compared to the predicted population trends to assess model‐accuracy and the influence of outside factors, such as immigration. The sensitivity of the projected population growth rate to relative change in each demographic rate was also explored. Against expectations of high productivity, we identified low seasonal breeding success due to nocturnal predation and low apparent first‐year survival, which led to a projected population growth rate (λ) of 0.818, indicating a declining trend. However, this trend was not reflected in the census counts, suggesting that high immigration was probably responsible for buffering against this decline. Elasticity analysis indicated λ was most sensitive to changes in adult survival but with covariance between demographic rates accounted for, most temporal variation in λ was due to variation in productivity. Our study demonstrates that high quality breeding habitat can buffer against population decline but high immigration and low productivity will expose even such stronghold populations to potential decline or abandonment if either factor is unsustainable. First‐year survival also appeared low, however this result is potentially confounded by high natal dispersal. First‐year survival and/or dispersal remains a significant knowledge gap that potentially undermines local solutions aimed at counteracting low productivity.  相似文献   

3.
Predicting how species will be affected by future climatic change requires the underlying environmental drivers to be identified. As vital rates vary over the lifecycle, structured population models derived from statistical environment–demography relationships are often used to inform such predictions. Environmental drivers are typically identified independently for different vital rates and demographic classes. However, these rates often exhibit positive temporal covariance, suggesting that vital rates respond to common environmental drivers. Additionally, models often only incorporate average weather conditions during a single, a priori chosen time window (e.g. monthly means). Mismatches between these windows and the period when the vital rates are sensitive to variation in climate decrease the predictive performance of such approaches. We used a demographic structural equation model (SEM) to demonstrate that a single axis of environmental variation drives the majority of the (co)variation in survival, reproduction, and twinning across six age–sex classes in a Soay sheep population. This axis provides a simple target for the complex task of identifying the drivers of vital rate variation. We used functional linear models (FLMs) to determine the critical windows of three local climatic drivers, allowing the magnitude and direction of the climate effects to differ over time. Previously unidentified lagged climatic effects were detected in this well‐studied population. The FLMs had a better predictive performance than selecting a critical window a priori, but not than a large‐scale climate index. Positive covariance amongst vital rates and temporal variation in the effects of environmental drivers are common, suggesting our SEM–FLM approach is a widely applicable tool for exploring the joint responses of vital rates to environmental change.  相似文献   

4.
Abstract: Mallard (Anas platyrhynchos) populations in the United States portion of the Great Lakes region increased through the 1990s but have since declined. To promote sustainable growth of this population, managers need to understand how perturbation of vital rates will affect annual population growth rate (Λ). We developed a stage-based model representing the female mallard population in the Great Lakes using vital rates generated from a landscape-level study documenting reproductive parameters from 2001 to 2003. We conducted perturbation analyses (i.e., sensitivity analyses) to identify vital rates that most influence Λ and variance decomposition analyses to determine the proportion of variation in Λ explained by variation in each vital rate. Perturbation analyses indicated that Λ was most sensitive to changes in nonbreeding survival, duckling survival, and nest success. Therefore, changes in these vital rates would be expected to result in the greatest ΔΛ. Process variation in breeding season parameters accounted for 63% of variation in Λ. Breeding season parameters explaining the most variation were duckling survival (32%) and nest success (16%). Survival of adult females outside the breeding season accounted for 36% of variation in Λ. Harvest derivation, high harvest, and high sensitivity of Λ to nonbreeding survival for Great Lakes female mallards suggests there is a strong potential for managing the Great Lakes mallard population via harvest management. Because Λ was highly sensitive to changes in duckling survival, we suggest programs that emphasize wetland protection, enhancement, and restoration as a management strategy to improve population growth for breeding mallards.  相似文献   

5.
Multiple pathways exist for species to respond to changing climates. However, responses of dispersal‐limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal‐limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5‐year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size‐specific fecundity, potentially reducing population‐level persistence. To better understand within‐population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph‐specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.  相似文献   

6.
1. Under the hypothesis of environmental buffering, populations are expected to minimize the variance of the most influential vital rates; however, this may not be a universal principle. Species with a life span <1 year may be less likely to exhibit buffering because of temporal or seasonal variability in vital rate sensitivities. Further, plasticity in vital rates may be adaptive for species in a variable environment with reliable cues. 2. We tested for environmental buffering and plasticity in vital rates using stage-structured matrix models from long-term data sets in four species of grassland rodents. We used periodic matrices to estimate stochastic elasticity for each vital rate and then tested for correlations with a standardized coefficient of variation for each rate. 3. We calculated stochastic elasticities for individual months to test for an association between increased reproduction and the influence of reproduction, relative to survival, on the population growth rate. 4. All species showed some evidence of buffering. The elasticity of vital rates of Peromyscus leucopus (Rafinesque, 1818), Sigmodon hispidus Say & Ord, 1825 and Microtus ochrogaster (Wagner, 1842) was negatively related to vital rate CV. Elasticity and vital rate CV were negatively related in Peromyscus maniculatus (Wagner, 1845), but the relationship was not statistically significant. Peromyscus leucopus and M. ochrogaster showed plasticity in vital rates; reproduction was higher following months where elasticity for reproduction exceeded that of survival. 5. Our results suggest that buffering is common in species with fast life histories; however, some populations that exhibit buffering are capable of responding to short-term variability in environmental conditions through reproductive plasticity.  相似文献   

7.
Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven‐year‐long demographic study on the perennial plant Arabis alpina (L.) across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilising population dynamics at range margins.  相似文献   

8.
The demographic variance of an age-structured population is defined. This parameter is further split into components generated by demographic stochasticity in each vital rate. The applicability of these parameters are investigated by checking how an age-structured population process can be approximated by a diffusion with only three parameters. These are the deterministic growth rate computed from the expected projection matrix and the environmental and demographic variances. We also consider age-structured populations where the fecundity at any stage is either zero or one, and there is neither environmental stochasticity nor dependence between individual fecundity and survival. In this case the demographic variance is uniquely determined by the vital rates defining the projection matrix. The demographic variance for a long-lived bird species, the wandering albatross in the southwestern part of the Indian Ocean, is estimated. We also compute estimates of the age-specific contributions to the total demographic variance from survival, fecundity and the covariance between survival and fecundity.  相似文献   

9.
Recent advances in stochastic demography provide unique insights into the probable effects of increasing environmental variability on population dynamics, and these insights can be substantially different compared with those from deterministic models. Stochastic variation in structured population models influences estimates of population growth rate, persistence and resilience, which ultimately can alter community composition, species interactions, distributions and harvesting. Here, we discuss how understanding these demographic consequences of environmental variation will have applications for anticipating changes in populations resulting from anthropogenic activities that affect the variance in vital rates. We also highlight new tools for anticipating the consequences of the magnitude and temporal patterning of environmental variability.  相似文献   

10.
Animal populations have developed multiple strategies to deal with environmental change. Among them, the demographic buffering strategy consists in constraining the temporal variation of the vital rate(s) that most affect(s) the overall performance of the population. Tortoises are known to buffer their temporal variation in adult survival, which typically has the highest contribution to the population growth rate λ, at the expense of a high variability on reproductive rates, which contribute far less to λ. To identify the effects of projected increases in droughts in its natural habitat, we use field data collected across 15 locations of Testudo graeca in southeast Spain over a decade. We analyse the effects of environmental variables on reproduction rates. In addition, we couple the demographic and environmental data to parameterise an integral projection model to simulate the effects of different scenarios of drought recurrence on λ under different degrees of intensity in the survival–reproduction tradeoff. We find that droughts negatively affect the probability of laying eggs; however, the overall effects on λ under the current drought recurrence (one/decade) are negligible when survival is constant (independent of the reduction of reproduction by drought events) and when survival increased as a tradeoff with the reduction of reproduction rates, with a threshold to population viability at three or more droughts/decade. Additionally, we show that, although some species may buffer current environmental regimes by carefully orchestrating how their vital rates vary through time, a demographic buffering strategy is insufficient to ensure population viability in extreme regimes. Our findings support the hypothesis that the demographic buffering strategy has a limit of effectiveness when adverse conditions occur frequently. Our methodological approach provides a framework for ecologists to determine how effective the management of environmental drivers can be for demographically buffering populations, and which scenarios may not provide long-term population persistence.  相似文献   

11.
Selection is assumed to eliminate life-histories showing high variability in vital rates that have the greatest influence on population performance. Therefore, an inverse variability-importance relationship of vital rates is believed to be a universal pattern for diverse life-histories. We tested for such a relationship using multi-year demographic data on a large number of populations of two perennial plant species. Applying different approaches, we first examined the overall variability-importance relationship for the average main vital rates (survival, growth, retrogression, fecundity) per species, and then separately for each population. We found an overall inverse relationship between temporal variation and importance of the average main vital rates for both study species, but these negative species-level correlations were mainly caused by different scales of the examined vital rates. When variability-importance relationships were examined across individual demographic transitions within populations, the abundance of positive and negative correlations depended largely on the method used, and positive correlations were more common after correcting vital rates for sampling variation than when using uncorrected vital rates. Our results cast doubt on the generality of the demographic buffering hypothesis, suggesting that the inverse variability-importance relationship may not be a universal pattern when vital rates are examined for multiple populations of the same plant species.  相似文献   

12.
Population change is regulated by vital rates that are influenced by environmental conditions, demographic stochasticity, and, increasingly, anthropogenic effects. Habitat destruction and climate change threaten the future of many wildlife populations, and there are additional concerns regarding the effects of harvest rates on demographic components of harvested organisms. Further, many population managers strictly manage harvest of wild organisms to mediate population trends of these populations. The goal of our study was to decouple harvest and environmental variability in a closely monitored population of wild ducks in North America, where we experimentally regulated harvest independently of environmental variation over a period of 4 years. We used 9 years of capture–mark–recapture data to estimate breeding population size during the spring for a population of wood ducks in Nevada. We then assessed the effect of one environmental variable and harvest pressure on annual changes in the breeding population size. Climatic conditions influencing water availability were strongly positively related to population growth rates of wood ducks in our study system. In contrast, harvest regulations and harvest rates did not affect population growth rates. We suggest efforts to conserve waterfowl should focus on the effects of habitat loss in breeding areas and climate change, which will likely affect precipitation regimes in the future. We demonstrate the utility of capture–mark–recapture methods to estimate abundance of species which are difficult to survey and test the impacts of anthropogenic harvest and climate on populations. Finally, our results continue to add to the importance of experimentation in applied conservation biology, where we believe that continued experiments on nonthreatened species will be critically important as researchers attempt to understand how to quantify and mitigate direct anthropogenic impacts in a changing world.  相似文献   

13.
Most species are exposed to significant environmental gradients across their ranges, but vital rates (survival, growth, reproduction and recruitment) need not respond in the same direction to those gradients. Opposing vital rate trends across environments, a phenomenon that has been loosely called ‘demographic compensation’, may allow species to occupy larger geographical ranges and alter their responses to climate change. Yet the term has never been precisely defined, nor has its existence or strength been assessed for multiple species. Here, we provide a rigorous definition, and use it to develop a strong test for demographic compensation. By applying the test to data from 26 published, multi‐population demographic studies of plants, we show that demographic compensation commonly occurs. We also investigate the mechanisms by which this phenomenon arises by assessing which demographic processes and life stages are most often involved. In addition, we quantify the effect of demographic compensation on variation in population growth rates across environmental gradients, a potentially important determinant of the size of a species’ geographical range. Finally, we discuss the implications of demographic compensation for the responses of single populations and species’ ranges to temporal environmental variation and to ongoing environmental trends, e.g. due to climate change.  相似文献   

14.
Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long‐term, large‐scale, and cross‐taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large‐scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large‐scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long‐term life‐history data for natural populations of seven primate species that have been studied for 29–52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates.  相似文献   

15.
For species in disturbance-prone ecosystems, vital rates (survival, growth and reproduction) often vary both between and within phases of the cycle of disturbance and recovery; some of this variation is imposed by the environment, but some may represent adaptation of the life history to disturbance. Anthropogenic changes may amplify or impede these patterns of variation, and may have positive or negative effects on population growth. Using stochastic population projection matrix models, we develop stochastic elasticities (proportional derivatives of the long-run population growth rate) to gauge the population effects of three types of change in demographic variability (changes in within- and between-disturbance-phase variability and phase-specific changes). Computing these elasticities for five species of disturbance-influenced perennial plants, we pinpoint demographic rates that may reveal adaptation to disturbance, and we demonstrate that species may differ in their responses to different types of changes in demographic variability driven by climate change.  相似文献   

16.
We derive formulas that can be applied to estimate the effective population size N(e) for organisms with two sexes reproducing once a year and having constant adult mean vital rates independent of age. Temporal fluctuations in population size are generated by demographic and environmental stochasticity. For populations with even sex ratio at birth, no deterministic population growth and identical mean vital rates for both sexes, the key parameter determining N(e) is simply the mean value of the demographic variance for males and females considered separately. In this case Crow and Kimura's generalization of Wright's formula for N(e) with two sexes, in terms of the effective population sizes for each sex, is applicable even for fluctuating populations with different stochasticity in vital rates for males and females. If the mean vital rates are different for the sexes then a simple linear combination of the demographic variances determines N(e), further extending Wright's formula. For long-lived species an expression is derived for N(e) involving the generation times for both sexes. In the general case with nonzero population growth and uneven sex ratio of newborns, we use the model to investigate numerically the effects of different population parameters on N(e). We also estimate the ratio of effective to actual population size in six populations of house sparrows on islands off the coast of northern Norway. This ratio showed large interisland variation because of demographic differences among the populations. Finally, we calculate how N(e) in a growing house sparrow population will change over time.  相似文献   

17.
Climate change has been identified as one of the most important drivers of wildlife population dynamics. The in‐depth knowledge of the complex relationships between climate and population sizes through density dependent demographic processes is important for understanding and predicting population shifts under climate change, which requires integrated population models (IPMs) that unify the analyses of demography and abundance data. In this study we developed an IPM based on Gaussian approximation to dynamic N‐mixture models for large scale population data. We then analyzed four decades (1972–2013) of mallard Anas platyrhynchos breeding population survey, band‐recovery and climate data covering a large spatial extent from North American prairies through boreal habitat to Alaska. We aimed to test the hypothesis that climate change will cause shifts in population dynamics if climatic effects on demographic parameters that have substantial contribution to population growth vary spatially. More specifically, we examined the spatial variation of climatic effects on density dependent population demography, identified the key demographic parameters that are influential to population growth, and forecasted population responses to climate change. Our results revealed that recruitment, which explained more variance of population growth than survival, was sensitive to the temporal variation of precipitation in the southern portion of the study area but not in the north. Survival, by contrast, was insensitive to climatic variation. We then forecasted a decrease in mallard breeding population density in the south and an increase in the northwestern portion of the study area, indicating potential shifts in population dynamics under future climate change. Our results implied that different strategies need to be considered across regions to conserve waterfowl populations in the face of climate change. Our modelling approach can be adapted for other species and thus has wide application to understanding and predicting population dynamics in the presence of global change.  相似文献   

18.
Current understanding of life‐history evolution and how demographic parameters contribute to population dynamics across species is largely based on assumptions of either constant environments or stationary environmental variation. Meanwhile, species are faced with non‐stationary environmental conditions (changing mean, variance, or both) created by climate and landscape change. To close the gap between contemporary reality and demographic theory, we develop a set of transient life table response experiments (LTREs) for decomposing realised population growth rates into contributions from specific vital rates and components of population structure. Using transient LTREs in a theoretical framework, we reveal that established concepts in population biology will require revision because of reliance on approaches that do not address the influence of unstable population structure on population growth and mean fitness. Going forward, transient LTREs will enhance understanding of demography and improve the explanatory power of models used to understand ecological and evolutionary dynamics.  相似文献   

19.
The wood duck (Aix sponsa) is a common and important cavity-nesting duck in North America; however, we know very little about how changes in vital rates influence population growth rate (λ). We used estimates of fertility and survival of female wood ducks from our nest-box studies in South Carolina, Alabama, and Georgia, USA, to create a stage-based matrix population model. We conducted perturbation analyses and ranked elasticity values to examine the relative importance of 17 component vital rates to λ. Female survival is influenced by nest success, so we recognized this female heterogeneity in our analyses. Four vital rates showed the greatest importance to λ. Analytic elasticities were greatest for breeding season and nonbreeding season survival of females that nested successfully, followed by nest success and female recruitment to the breeding population. Differences in female quality were important to λ. Next, we used process variation of vital rates and conducted life-stage simulation analyses (LSA) followed by variance decomposition to determine the amount of variation in λ explained by each vital rate. Female recruitment to the breeding population explained 57.7% of the variation in λ followed by nest success (11.4%), and breeding and nonbreeding season survival of females that nested successfully (9.3% and 9.4%, respectively). Together these 4 vital rates explained 88% of the variation in λ. Mean asymptotic population growth rate (λ = 0.80 ± 0.08 [SD]) from LSA revealed a declining population. Recruitment of females hatched from nest boxes was insufficient to sustain the nest-box population. However, including yearling (SY) females that were produced outside of nest boxes (i.e., immigrants) increased recruitment rates 1.5 to 2 times more than when only SY females recruited from nest boxes were included. Future research that examines how emigration and immigration interact with survival and reproduction to influence local population dynamics of wood ducks will be important for identifying the value of nest-box programs to wood duck conservation and management. © 2019 The Wildlife Society.  相似文献   

20.
Despite decades of field research on greater sage-grouse, range-wide demographic data have yet to be synthesized into a sensitivity analysis to guide management actions. We reviewed range-wide demographic rates for greater sage-grouse from 1938 to 2011 and used data from 50 studies to parameterize a 2-stage, female-based population matrix model. We conducted life-stage simulation analyses to determine the proportion of variation in population growth rate (λ) accounted for by each vital rate, and we calculated analytical sensitivity, elasticity, and variance-stabilized sensitivity to identify the contribution of each vital rate to λ. As expected for an upland game bird, greater sage-grouse showed marked annual and geographic variation in several vital rates. Three rates were demonstrably important for population growth: female survival, chick survival, and nest success. Female survival and chick survival, in that order, had the most influence on λ per unit change in vital rates. However, nest success explained more of the variation in λ than did the survival rates. In lieu of quantitative data on specific mortality factors driving local populations, we recommend that management efforts for greater sage-grouse first focus on increasing female survival by restoring large, intact sagebrush-steppe landscapes, reducing persistent sources of human-caused mortality, and eliminating anthropogenic habitat features that subsidize species that prey on juvenile, yearling, and adult females. Our analysis also supports efforts to increase chick survival and nest success by eliminating anthropogenic habitat features that subsidize chick and nest predators, and by managing shrub, forb, and grass cover, height, and composition to meet local brood-rearing and nesting habitat guidelines. We caution that habitat management to increase chick survival and nest success should not reduce the cover or height of sagebrush below that required for female survival in other seasons (e.g., fall, winter). The success or failure of management actions for sage-grouse should be assessed by measuring changes in vital rates over long time periods to avoid confounding with natural, annual variation. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号