首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During spermatogenesis, preleptotene spermatocytes traverse the blood-testis barrier (BTB) in the seminiferous epithelium, which is reminiscent of viral pathogens breaking through the tight junctions of host epithelial cells. The process also closely resembles the migration of leukocytes across endothelial tight junctions to reach inflammation sites. Cell adhesion molecules of the immunoglobulin superfamily (e.g., JAM/CAR/nectin) participate in germ cell migration by conferring transient adhesion between Sertoli and germ cells through homophilic and heterophilic interactions. The same molecules also comprise the junctional complexes at the BTB. Interestingly, JAM/CAR/nectin molecules mediate virus uptake and leukocyte transmigration in strikingly similar manners. It is likely that the strategy used by viruses and leukocytes to break through junctional barriers is used by germ cells to open up the inter-Sertoli cell junctions. In associating these diverse cellular events, we highlight the "guiding" role of JAM/CAR/nectin molecules for germ cell passage. Knowledge on viral invasion and leukocyte transmigration has also shed insights into germ cell movement during spermatogenesis.  相似文献   

2.
Tubulobulbar complexes may be part of the mechanism by which intercellular adhesion junctions are internalized by Sertoli cells during sperm release. These complexes develop in regions where Sertoli cells are attached to adjacent cells by intercellular adhesion junctions termed ectoplasmic specializations. At sites where Sertoli cells are attached to spermatid heads, tubulobulbar complexes consist of fingerlike processes of the spermatid plasma membrane, corresponding invaginations of the Sertoli cell plasma membrane, and a surrounding cuff of modified Sertoli cell cytoplasm. At the terminal ends of the complexes occur clusters of vesicles. Here we show that tubulobulbar complexes develop in regions previously occupied by ectoplasmic specializations and that the structures share similar molecular components. In addition, the adhesion molecules nectin 2 and nectin 3, found in the Sertoli cell and spermatid plasma membranes, respectively, are concentrated at the distal ends of tubulobulbar complexes. We also demonstrate that double membrane bounded vesicles are associated with the ends of tubulobulbar complexes and nectin 3 is present on spermatids, but is absent from spermatozoa released from the epithelium. These results are consistent with the conclusion that Sertoli cell and spermatid membrane adhesion domains are internalized together by tubulobulbar complexes. PKCalpha, a kinase associated with endocytosis of adhesion domains in other systems, is concentrated at tubulobulbar complexes, and antibodies to endosomal and lysosomal (LAMP1, SGP1) markers label the cluster of vesicles associated with the ends of tubulobulbar complexes. Our results are consistent with the conclusion that tubulobulbar complexes are involved with the disassembly of ectoplasmic specializations and with the internalization of intercellular membrane adhesion domains during sperm release.  相似文献   

3.
4.
Actin's functional complexity makes it a likely target of oxidative stress but also places it in a prime position to coordinate the response to oxidative stress. We have previously shown that the NADPH oxidoreductase Oye2p protects the actin cytoskeleton from oxidative stress. Here we demonstrate that the physiological consequence of actin oxidation is to accelerate cell death in yeast. Loss of Oye2p leads to reactive oxygen species accumulation, activation of the oxidative stress response, nuclear fragmentation and DNA degradation, and premature chronological aging of yeast cells. The oye2Delta phenotype can be completely suppressed by removing the potential for formation of the actin C285-C374 disulfide bond, the likely substrate of the Oye2p enzyme or by treating the cells with the clinically important reductant N-acetylcysteine. Because these two cysteines are coconserved in all actin isoforms, we theorize that we have uncovered a universal mechanism whereby actin helps to coordinate the cellular response to oxidative stress by both sensing and responding to oxidative load.  相似文献   

5.
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.  相似文献   

6.
Using several actin isotype-specific cDNA probes, we found actin mRNA of two size classes, 2.1 and 1.5 kilobases (kb), in extracts of polyadenylated and nonpolyadenylated RNA from sexually mature CD-1 mouse testes. Although the 2.1-kb sequence was present in both meiotic and postmeiotic testicular cell types, it decreased manyfold in late haploid cells. The 1.5-kb actin sequence was not detectable in meiotic pachytene spermatocytes (or in liver or kidney cells), but was present in round and elongating spermatids and residual bodies. To differentiate between the beta- and gamma-actin mRNAs, we isolated a cDNA, pMGA, containing the 3' untranslated region of a mouse cytoplasmic actin that has homology to the 3' untranslated region of a human gamma-actin cDNA but not to the 3' untranslated regions of human alpha-, beta-, or cardiac actins. Dot blot hybridizations with pMGA detected high levels of presumptive gamma-actin mRNA in pachytene spermatocytes and round spermatids, with lower amounts found in elongating spermatids. Hybridization with the 3' untranslated region of a rat beta-actin probe revealed that round spermatids contained higher levels of beta-actin mRNA than did pachytene spermatocytes or residual bodies. Both probes hybridized to the 2.1-kb actin mRNA but failed to hybridize to the 1.5-kb mRNA.  相似文献   

7.
The ADP-ribosylation factor (Arf) Arf GTPase-activating proteins (GAPs) are a family of proteins that induce hydrolysis of GTP bound to Arf. A conserved domain containing a zinc finger motif mediates catalysis. The substrate, Arf.GTP, affects membrane trafficking and actin remodelling. Consistent with activity as an Arf regulator, the Arf GAPs affect both of these pathways. However, the Arf GAPs are likely to have Arf-independent activities that contribute to their cellular functions. Structures of the Arf GAPs are diverse containing catalytic, protein-protein interaction and lipid interaction domains in addition to the Arf GAP domain. Some Arf GAPs have been identified and characterized on the basis of activities other than Arf GAP. Here, we describe the Arf GAP family, enzymology of some members of the Arf GAP family and known functions of the proteins. The results discussed illustrate roles for both Arf-dependent and -independent activities in the regulation of cellular architecture.  相似文献   

8.
Sertoli cells have long been considered to be involved in the regulation of the immune response in the testis. More recently, the Fas system has been implicated in the maintenance of the immune privilege in the testis as well as in the regulation of germ cell apoptosis. However, the control of Fas and Fas ligand (FasL) expression in the testis remains unknown. In the present study, we demonstrate that cultured mouse Sertoli cells constitutively express a low level of membrane-bound Fas protein, but not a soluble form of Fas. Sertoli cells stimulated with TNF-alpha and IFN-gamma markedly increase the expression of both soluble and membrane-bound Fas in a dose-dependent manner. The up-regulated membrane-bound Fas protein is functionally active because it induces a significant level of Sertoli cell death in the presence of Neuro-2a FasL+ effector cells. Interestingly, the soluble form of Fas, which is induced by the same cytokines but has an antiapoptotic effect, is also functional. In fact, conditioned media from TNF-alpha-stimulated Sertoli cell cultures inhibit Neuro-2a FasL+-induced cell death. Taken together, our data suggest a possible regulatory role of TNF-alpha and IFN-gamma on Fas-mediated apoptosis in the testis through disruption of the balance between different forms of Fas.  相似文献   

9.
DAZL proteins are germ-cell-specific RNA-binding proteins essential for gametogenesis. The precise molecular role of these proteins in germ-cell development remains enigmatic; however, they appear to function in the cytoplasm. In order to directly address the function of vertebrate DAZL proteins, we have used Xenopus laevis oocytes as a model system. Here we demonstrate that members of this family, including Xdazl, mouse Dazl, human DAZL, human DAZ and human BOULE, have the ability to stimulate translation and function at the level of translation initiation. We show that DAZL proteins interact with poly(A)-binding proteins (PABPs), which are critical for the initiation of translation. Mapping and tethered function experiments suggest that these interactions are physiologically important. This leads to an attractive hypothesis whereby DAZL proteins activate translationally silent mRNAs during germ cell development through the direct recruitment of PABPs.  相似文献   

10.
Scabrous and Gp150 are endosomal proteins that regulate Notch activity   总被引:2,自引:0,他引:2  
Notch and Delta are required for lateral inhibition during eye development. They prevent a tenfold excess in R8 photoreceptor cell specification. Mutations in two other genes, Scabrous and Gp150, result in more modestly increased R8 specification. Their roles in Notch signaling have been unclear. Both sca and gp150 are required for ectopic Notch activity that occurs in the split mutant. Similar phenotypes showed that sca and gp150 genes act in a common pathway. Gp150 was required for all activities of Sca, including inhibition of Notch activity and association with Notch-expressing cells that occur when Sca is ectopically expressed. Mosaic analysis found that the gp150 and sca genes were required in different cells from one another. Gp150 concentrated Sca protein in late endosomes. A model is proposed in which endosomal Sca and Gp150 promote Notch activation in response to Delta, by regulating acquisition of insensitivity to Delta in a subset of cells.  相似文献   

11.
During spermatogenesis, extensive junction restructuring takes place at the blood-testis barrier (BTB) and the Sertoli cell-spermatid interface known as the apical ectoplasmic specialization (apical ES, a testis-specific adherens junction) in the seminiferous epithelium. However, the mechanism(s) that regulates these critical events in the testis remains unknown. Based on the current concept in the field, changes in the phosphorylation status of integral membrane proteins at these sites can induce alterations in protein endocytosis and recycling, causing junction restructuring. Herein, c-Yes, a non-receptor protein tyrosine kinase, was found to express abundantly at the BTB and apical ES stage-specifically, coinciding with junction restructuring events at these sites during the seminiferous epithelial cycle of spermatogenesis. c-Yes also structurally associated with adhesion proteins at the BTB (e.g., occludin and N-cadherin) and the apical ES (e.g., β1-integrin, laminins β3 and γ3), possibly to regulate phosphorylation status of proteins at these sites. SU6656, a selective c-Yes inhibitor, was shown to perturb the Sertoli cell tight junction-permeability barrier in vitro, which is mediated by changes in the distribution of occludin and N-cadherin at the cell-cell interface, moving from cell surface to cytosol, thereby destabilizing the tight junction-barrier. However, this disruptive effect of SU6656 on the barrier was blocked by testosterone. Furthermore, c-Yes is crucial to maintain the actin filament network in Sertoli cells since a blockade of c-Yes by SU6656 induced actin filament disorganization. In summary, c-Yes regulates BTB and apical ES integrity by maintaining proper distribution of integral membrane proteins and actin filament organization at these sites.  相似文献   

12.
The polyethylene glycol (PEG) method for immunofluorescence localization of cytoskeletal antigens has been extended to the ultrastructural level using glutaraldehyde-fixed tissues and immunogold staining. Semithin sections of fixed tissue embedded in polyethylene glycol are divested of the PEG, exposed to purified antibodies (e.g., antiactin, antitubulin) and anti-IgG-colloidal gold. The sections may be processed by dehydration and critical-point drying, or reembedment in hydrophilic substances. Tubulin is demonstrated in the mitotic spindles of dividing spermatogonia, manchettes, axonemes and centrioles of developing spermatids, and in the Sertoli cell cytoplasm; actin localization is demonstrated in the myoid cells of the tunica propria, and smooth muscle cells of arterioles in the interstitial tissue. The results demonstrate the applicability and versatility of PEG embedding for immunocytochemistry.  相似文献   

13.
Summary Germ cells and Sertoli cells in embryonic mouse testes (day 14 to 20 of gestation) were examined by sectioning and freeze-fracture. Intercellular cytoplasmic bridges between the germ cells are observed in day 14 and older embryos. Membrane specializations with dense fuzzy material similar to the socalled desmosome-like structures are found between Sertoli cells and germ cells. A cell contact area with dense opposed membranes is also found between adjacent germ cells. Asymmetrical dense fuzzy lining of both Sertoli and germ cell membranes is noted. Pinocytotic pits or caveolae are frequently found in the Sertoli cell membrane. Between adjacent Sertoli cells, gap junctions of various sizes and focal meshworks of the occluding junctions are found. Most of the occluding junctional particles are located in the center of the grooves in the E face, and are similar to those in postnatal and adult Sertoli cell junctions. In addition, on both fractured faces there are ridges and grooves devoid of particles which are continuous with occluding junctions with particles, suggesting an initial stage in the formation of occluding junctions of the Sertoli cells. Particles gathered at the site of desmosome-like structures are present on the P face of the Sertoli cell.This work is supported by the Japanese Ministry of Education  相似文献   

14.
The polyethylene glycol (PEG) method for immunofluorescence localization of cytoskeletal antigens has been extended to the ultrastructural level using glutaraldehyde-fixed tissues and immunogold staining. Semithin sections of fixed tissue embedded in polyethylene glycol are divested of the PEG, exposed to purified antibodies (e.g., antiactin, antitubulin) and anti-IgG-colloidal gold. The sections may be processed by dehydration and critical-point drying, or reembedment in hydrophilic substances. Tubulin is demonstrated in the mitotic spindles of dividing spermatogonia, manchettes, axonemes and centrioles of developing spermatids, and in the Sertoli cell cytoplasm; actin localization is demonstrated in the myoid cells of the tunica propria, and smooth muscle cells of arterioles in the interstitial tissue. The results demonstrate the applicability and versatility of PEG embedding for immunocytochemistry.  相似文献   

15.
Paxillin is a focal adhesion adapter protein involved in the integration of growth factor- and adhesion-mediated signal transduction pathways. Paxillin LD motifs have been demonstrated to bind to several proteins associated with remodeling of the actin cytoskeleton including the focal adhesion kinase, vinculin, and a complex of proteins comprising p95PKL, PIX, and PAK (Turner, C.E., M. C. Brown, J.A. Perrotta, M.C. Riedy, S.N. Nikolopoulos, A.R. McDonald, S. Bagrodia, S. Thomas, and P.S. Leventhal. 1999. J. Cell Biol. 145:851-863). In this study, we report the cloning and initial characterization of a new paxillin LD motif-binding protein, actopaxin. Analysis of the deduced amino acid sequence of actopaxin reveals a 42-kD protein with two calponin homology domains and a paxillin-binding subdomain (PBS). Western blotting identifies actopaxin as a widely expressed protein. Actopaxin binds directly to both F-actin and paxillin LD1 and LD4 motifs. It exhibits robust focal adhesion localization in several cultured cell types but is not found along the length of the associated actin-rich stress fibers. Similar to paxillin, it is absent from actin-rich cell-cell adherens junctions. Also, actopaxin colocalizes with paxillin to rudimentary focal complexes at the leading edge of migrating cells. An actopaxin PBS mutant incapable of binding paxillin in vitro cannot target to focal adhesions when expressed in fibroblasts. In addition, ectopic expression of the PBS mutant and/or the COOH terminus of actopaxin in HeLa cells resulted in substantial reduction in adhesion to collagen. Together, these results suggest an important role for actopaxin in integrin-dependent remodeling of the actin cytoskeleton during cell motility and cell adhesion.  相似文献   

16.
17.
CEA cell adhesion molecule 1 (CEACAM1), a type 1 transmembrane and homotypic cell adhesion protein belonging to the carcinoembryonic antigen (CEA) gene family and expressed on epithelial cells, is alternatively spliced to produce four major isoforms with three or four Ig-like ectodomains and either long (CEACAM1-L) or short (CEACAM1-S) cytoplasmic domains. When murine MC38 (methylcholanthrene-induced adenocarcinoma 38) cells were transfected with human CEACAM1-L and stimulated with sodium pervanadate, actin was found to co-localize with CEACAM1-L at cell-cell boundaries but not in untreated cells. When CEACAM1-L was immunoprecipitated from pervanadate-treated MC38/CEACAM1-L cells and the associated proteins were analyzed by two-dimensional gel analysis and mass spectrometry, actin and tropomyosin, among other proteins, were identified. Whereas a glutathione S-transferase (GST) fusion protein containing the l-isoform (GST-Cyto-L) bound poorly to F-actin in a co-sedimentation assay, the S-isoform fusion protein (GST-Cyto-S) co-sedimented with F-actin, especially when incubated with G-actin during polymerization (K(D) = 7.0 microm). Both GST-Cyto-S and GST-Cyto-L fusion proteins bind G-actin and tropomyosin by surface plasmon resonance studies with binding constants of 0.7 x 10(-8) and 1.0 x 10(-7) m for GST-Cyto-L to G-actin and tropomyosin, respectively, and 3.1 x 10(-8) and 1.3 x 10(-7) m for GST-Cyto-S to G-actin and tropomyosin, respectively. Calmodulin or EDTA inhibited binding of the GST-Cyto-L fusion protein to G-actin, whereas calmodulin and G-actin, but not EDTA, stimulated binding to tropomyosin. A biotinylated 14-amino acid peptide derived from the juxtamembrane portion of the cytoplasmic domain of CEACAM1-L associated with both G-actin and tropomyosin with K(D) values of 1.3 x 10(-5) and 1.8 x 10(-5) m, respectively. These studies demonstrate the direct interaction of CEACAM1 isoforms with G-actin and tropomyosin and the direct interaction of CEACAM1-S with F-actin.  相似文献   

18.
Daily sperm production per gram parenchyma (DSP/g) in humans is only 25 or 35% of that for most species including rats and nonhuman primates. To explain the low efficiency of spermatogenesis in humans, the number of generations of germ cells (spermatocytes and spermatids) and the number of these germ cells in each generation were determined for each spermatogenic stage in men with varied efficiencies. Testes were obtained at autopsy, fixed by vascular perfusion with glutaraldehyde, further fixed in osmium, and embedded in Epon 812 before 0.5-micron sections were stained with toluidine blue. Tubular cross sections were photographed, and spermatogenic stages were determined by two observers. Testes were divided into three groups on the basis of DSP/g. The number of generations of spermatocytes and spermatids was greater (p < 0.05) in the high (2.01 +/- 0.05) and intermediate (1.77 +/- 0.04) than in the low (1.45 +/- 0.15) DSP/g group. All groups had a lower number of generations of spermatocytes and spermatids compared to the optimum value of three. The number of these generations per cross section was related (r = 0.85; p < 0.01) to DSP/g in these men. The number per cross section of spermatocytes, spermatids, and the combined number of germ cells was higher (p < 0.01) in the high than in the low DSP/g group. The combined number of germ cells per cross section was related (r = 0.85; p < 0.01) to DSP/g. The combined number of germ cells was higher in the high versus the low DSP/g group in stages I through V, but this difference was significant only in stages IV and V.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Gene expression profiling by cDNA microarrays during murine thymus ontogeny has contributed to dissecting the large-scale molecular genetics of T cell maturation. Gene profiling, although useful for characterizing the thymus developmental phases and identifying the differentially expressed genes, does not permit the determination of possible interactions between genes. In order to reconstruct genetic interactions, on RNA level, within thymocyte differentiation, a pair of microarrays containing a total of 1,576 cDNA sequences derived from the IMAGE MTB library was applied on samples of developing thymuses (14-17 days of gestation). The data were analyzed using the GeneNetwork program. Genes that were previously identified as differentially expressed during thymus ontogeny showed their relationships with several other genes. The present method provided the detection of gene nodes coding for proteins implicated in the calcium signaling pathway, such as Prrg2 and Stxbp3, and in protein transport toward the cell membrane, such as Gosr2. The results demonstrate the feasibility of reconstructing networks based on cDNA microarray gene expression determinations, contributing to a clearer understanding of the complex interactions between genes involved in thymus/thymocyte development.  相似文献   

20.
The Sertoli cell ectoplasmic specialization is a unique junctional structure involved in the interaction between elongating spermatids and Sertoli cells. We have previously shown that suppression of testicular testosterone in adult rats by low-dose testosterone and estradiol (TE) treatment causes the premature detachment of step 8 round spermatids from the Sertoli cell. Because these detaching round spermatids would normally associate with the Sertoli cell via the ectoplasmic specialization, we hypothesized that ectoplasmic specializations would be absent in the seminiferous epithelium of TE-treated rats, and the lack of this junction would cause round spermatids to detach. In this study, we investigated Sertoli cell ectoplasmic specializations in normal and TE-treated rat testis using electron microscopy and localization of known ectoplasmic specialization-associated proteins (espin, actin, and vinculin) by immunocytochemistry and confocal microscopy. In TE-treated rats where round spermatid detachment was occurring, ectoplasmic specializations of normal morphology were observed opposite the remaining step 8 spermatids in the epithelium and, importantly, in the adluminal Sertoli cell cytoplasm during and after round spermatid detachment. When higher doses of testosterone were administered to promote the reattachment of all step 8 round spermatids, newly elongating spermatids associated with ectoplasmic specialization proteins within 2 days. We concluded that the Sertoli cell ectoplasmic specialization structure is qualitatively normal in TE-treated rats, and thus the absence of this structure is unlikely to be the cause of round spermatid detachment. We suggest that defects in adhesion molecules between round spermatids and Sertoli cells are likely to be involved in the testosterone-dependent detachment of round spermatids from the seminiferous epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号