首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In vitro growth of preantral follicles has the potential to produce considerable numbers of competent oocytes for use in medicine, agriculture, and even wildlife conservation. The critical regulatory role of growth factors and hormones in the development of preantral follicles has been established. This study investigated the effect of glial‐derived neurotropic factor (GDNF) and kit ligand (KL) on the in vitro development of ovine preantral follicles. Results indicated that both GDNF and KL significantly improved activation of primordial follicles, similar to co‐addition of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), which are commonly used for in vitro follicular development. Importantly, GDNF had a more profound effect on follicle health, development, and differentiation compared with KL alone. Furthermore, the combination of GDNF and KL in the presence of EGF and bFGF had a positive, synergic effect on health, development, and differentiation of preantral follicles, as determined by histological and hormonal assessments. The results of this study may provide a foundation for further studies that will unravel the molecular mechanisms of follicular development to further improve the current status of in vitro preantral follicle culture. Mol. Reprod. Dev. 80: 35–47, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Salivary glands contain two major epithelial cell types: acinar cells which produce the primary salivary secretion, including amylase, and ductal cells which reabsorb electrolytes but also secrete kallikrein. Here we investigated salivary acinar cell differentiation in vitro using the activity of the salivary amylase and tissue kallikrein promoters as markers of acinar cell and ductal cell differentiation, respectively. Each of the promoter sequences was cloned into a replication-deficient adenoviral vector containing the luciferase reporter gene. Previous studies showed that a human submandibular gland cell line (HSG) differentiated into acinar cells when cultured on a reconstituted basement membrane matrix (Matrigel). The luciferase activity of the amylase promoter vector (AdAMY-luc) was low in HSG cells cultured on plastic, where they grow as an epithelial monolayer. The promoter activity increased approximately tenfold when HSG cells were cultured on Matrigel and developed an acinar phenotype. Under the same conditions, the luciferase activity of the kallikrein promoter (AdKALL-luc) was not induced. Because HSG cells demonstrate acinar cell morphology, but not amylase gene expression, when cultured on laminin-1, certain soluble components of Matrigel were tested for their ability to induce the amylase promoter during in vitro differentiation of acinar cells. We find that epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), which are present in the basement membrane, and hepatocyte growth factor (HGF) increase activity of the amylase promoter. Other basement membrane-derived growth factors such as TGF-beta, basic fibroblast growth factor (bFGF), and platelet-derived growth factor (PGDF), as well as tumor necrosis factor (TNF-alpha), keratinocyte growth factor (KGH), nerve growth factor (NGF) and interferon gamma (IFN-gamma) were inactive. This system will be further exploited to study the mechanisms by which extracellular matrix molecules and growth factors regulate salivary acinar cell differentiation.  相似文献   

6.
Thyroidal levels of fibroblast growth factor-2 (FGF-2) and fibroblast growth factor receptor 1 (FGFR1) are elevated in human thyroid hyperplasia. To understand the significance of this, effects of FGFR1 activation on normal human thyrocyte growth and function in vitro and the regulation of FGF-2 and FGFR1 expression have been examined. FGF-2 stimulated cell growth, as measured by cell counting, and inhibited thyroid function as measured by 125I uptake. Sensitivity to FGF-2 disappeared after 7 days, although FGFR1 expression was maintained. Thyroid-stimulating hormone (TSH, 300 mU/l) increased FGFR1 mRNA expression within 4 h and protein expression by 8 h. Exogenous FGF-2 decreased FGFR1 protein. Endogenous FGF-2 levels were low (approximately 1-2 pg/microg protein), and TSH treatment decreased these by 50%. Protein kinase C (PKC) activation increased FGF-2 mRNA and FGF-2 secretion within 2 h. This effect was enhanced (4.4-fold) when cells were cultured in TSH. We conclude that TSH stimulates FGFR1 but not FGF-2 expression. PKC activation stimulates FGF-2 synthesis and secretion, and TSH synergizes with PKC activators. Increases in FGFR1 or FGF-2 or in both may contribute to goitrogenesis.  相似文献   

7.
Oocytes secrete factors that regulate the development of the surrounding granulosa cells in ovarian follicles. KIT ligand (KL) mRNA expression in granulosa cells is thought to be regulated by oocytes; however, the factor(s) that mediate this effect are not known. One candidate is the oocyte-specific gene product growth differentiation factor-9 (GDF-9). This study examined the effect of recombinant GDF-9 (rGDF-9) on steady-state KL mRNA expression levels in preantral and mural granulosa cells in vitro. Furthermore, the study compared the effect of rGDF-9 with that of coculture with oocytes at different developmental stages. As determined by RNase protection assay, both KL-1 and KL-2 mRNA levels in preantral and mural granulosa cells were suppressed by 25-250 ng/ml rGDF-9. Fully grown oocytes also suppressed both KL-1 and KL-2 mRNA expression levels. Partly grown oocytes isolated from 7-, 10-, or 12-day-old mice either had no effect on KL mRNA levels or promoted KL-1 mRNA steady-state expression. It is concluded that GDF-9 is likely to mediate the action of fully grown, but not partly grown, oocytes on granulosa cell KL mRNA expression.  相似文献   

8.
9.
10.
Quox 1, a quail homeobox gene, is the first vertebrate Antp-type homeobox gene to be described that is expressed in the forebrain. We have already shown that the Quox 1 protein is specifically expressed in post-mitotic sensory neurons. A subpopulation of sympathetic ganglion cells was also found to be labelled by anti-Quox 1 in vitro, but it is not clear whether this protein is expressed in sympathetic ganglion cells in vivo and, if so, the conditions which regulate its expression in vitro. In the present study, we used immunocytochemistry to find out whether Quox 1 expression in sympathetic ganglion cells in vitro is regulated by environmental signals. We found that several peptide growth factors can regulate Quox 1 expression in cultured sympathetic ganglion cells, and that they do so at physiological concentration and in a variety of ways. Basic fibroblast growth factor (FGF-2) induces Quox 1 protein expression, whereas insulin and human insulin-like growth factor-I (IGF-I) down-regulate Quox 1 expression.  相似文献   

11.
12.
Klotho and aging     
The klotho gene encodes a single-pass transmembrane protein that forms a complex with multiple fibroblast growth factor (FGF) receptors and functions as an obligatory co-receptor for FGF23, a bone-derived hormone that induces negative phosphate balance. Defects in either Klotho or Fgf23 gene expression cause not only phosphate retention but also a premature-aging syndrome in mice, unveiling a potential link between phosphate metabolism and aging. In addition, the extracellular domain of Klotho protein is clipped on the cell surface and secreted into blood stream, potentially functioning as an endocrine factor. The secreted Klotho protein has a putative sialidase activity that modifies glycans on the cell surface, which may explain the ability of secreted Klotho protein to regulate activity of multiple ion channels and growth factors including insulin, IGF-1, and Wnt. Secreted Klotho protein also protects cells and tissues from oxidative stress through a mechanism yet to be identified. Thus, the transmembrane and secreted forms of Klotho protein have distinct functions, which may collectively affect aging processes in mammals.  相似文献   

13.
Exogenous growth factors normally required in cell culture activate cell proliferation via the molecular controls of cell-cycle progression. Highly differing influences of mitogenic stimulation of Chinese hamster ovary (CHO) cells by insulin and basic fibroblast growth factor(bFGF) have been clearly observed in a defined protein-free medium. CHO K1 cells stimulated only with insulin grow with flattened cell morphology and extensive cell-cell contact, whereas stimulation with only bFGF or bFGF plus insulin results in loss of cell-cell contact and a transformed and rounded-up morphology. Compared with insulin-stimulated cells, bFGF-stimulated cells exhibit a relatively long G1, and short S phase, and contain higher levels of cyclin E. Observation of elevated levels of cyclin E in wild-type CHO K1 cells mitogenically stimulated by basic fibroblast growth factor motivated transfection of these cells by a cyclin E expression vector. These transfectants grew rapidly in protein-free basal medium and had similar cyclin b levels, distributions of nuclear cell-cycle times, and cell morphologies as bFGF-stimutated CHO K1 culture. Metabolic engineering of cell-cycle regulation thus bypasses exogenous growth factor requirements, addressing a priority objective in economical, reproducible, and safe biopharmaceutical manufacturing. (c) 1995 John Wiley & Sons Inc.  相似文献   

14.
J G Flanagan  D C Chan  P Leder 《Cell》1991,64(5):1025-1035
The ligand (KL) for the c-kit receptor is a growth factor encoded at the mouse steel (Sl) locus. KL exists in both cell surface and soluble forms, though little is known of the regulation and functional significance of these forms. We show here that tissue-specific alternative splicing gives two types of KL mRNA. Both encode a transmembrane domain, but in transfected cells one produced the soluble form of KL at relatively high levels, whereas the other preferentially gave the cell surface form. Cell surface KL not only stimulated proliferation, but also mediated cell-cell adhesion. The SId allele, which impairs development of hematopoietic cells, melanocytes, and germ cells, has a deletion in the KL gene removing the transmembrane and intracellular domains. Expression of a corresponding cDNA gave a soluble protein that stimulated cellular proliferation but was not associated with the cell surface. These results provide evidence that cell surface KL has a critical role in the intact organism.  相似文献   

15.
16.
17.
Angiogenic switch marks the beginning of tumor’s strategy to acquire independent blood supply. In some subtypes of non-Hodgkin’s lymphomas, higher local vascular endothelial growth factor (VEGF) expression correlates with increased microvessel density. However, this local VEGF expression is higher only in tumors with elevated expression of the receptors of the growth factor, suggesting an autocrine growth-promoting feedback loop. Several studies have indicated that VEGF receptors are also targeted by Tat protein from the HIV-1-infected cells. Given the similarity of the basic region of Tat to the angiogenic factors (basic fibroblast growth factor, VEGF), Tat mimics these proteins and binds to their receptors. We evaluated the role of HIV-1 Tat in regulating the level of VEGF expression and microvessel density in the AIDS-related diffuse large B-cell (DLBCL) and Burkitt lymphomas (BL). By luciferase assay, we showed that VEGF promoter activity was downregulated in vitro in cells transfected with Tat. Reduced VEGF protein expression in primary HIV-1 positive BL and DLBCL, compared to the negative cases, supported the findings of promoter downregulation from the cell lines. Microvascular density assessed by CD34 expression was, however, higher in HIV-1 positive than in HIV-1 negative tumors. These results suggest that Tat has a wider angiogenic role, besides the regulation of VEGF expression. Thus, targeting Tat protein itself and stabilizing transient silencing of VEGF expression or use of monoclonal antibodies against their receptors in the AIDS-associated tumors will open a window for future explorable pathways in the management of angiogenic phenotypes in the AIDS-associated non-Hodgkin’s lymphomas.  相似文献   

18.
19.
Abstract: Patients with diabetes are predisposed to microvascular disease. In the retina and brain, this is characterized by neovascularization and new capillary formation. Because of the potential importance of plasmin generation in these processes, we evaluated the effect of elevated glucose concentrations on expression of plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and urokinase (uPA) in cultured bovine brain endothelial cells (BBEC) versus cultured bovine aortic endothelial cells (BAEC). We observed that BBEC PAI-1 mRNA levels were decreased fivefold in cells cultured in media containing 20 m M glucose compared with BBEC cultured in media with 5.5 m M glucose, whereas expression of PAI-1 mRNA in BAEC, bovine mesenteric endothelial cells, and human umbilical vein endothelial cells was not modulated under these conditions. Expression of PAI-1 protein was also inhibited by growth of BBEC in elevated glucose, but the effect was less marked than at the mRNA level. Elevated glucose did not decrease expression of PAI-1 protein by BAEC. Withdrawal of acidic fibroblast growth factor enhanced expression of PAI-1 mRNA and protein in BBEC. Expression of tPA mRNA was not affected by the glucose concentration of the medium, and uPA mRNA was not detected in our BBEC cultures. A decrease in the local tissue activity of PAI-1 by elevated glucose concentrations, with no effect on tPA or uPA expression, would lead to an increase in the plasmin activity and thereby predispose neural tissues, such as the cerebrum and retina, of diabetic patients to neovascularization.  相似文献   

20.
The pancreas morphology of transgenic mice that overexpress transforming growth factor-beta1 (TGF-beta1) in the pancreas resembles partially morphological features of chronic pancreatitis, such as progressive accumulation of extracellular matrix (ECM). Using this transgenic mouse model, we characterized the composition of pancreatic fibrosis and involved fibrogenic mediators. On day 14 after birth, fibrotic tissue was mainly composed of collagen type I and III. At this time, mRNA levels of TGF-beta1 were increased. On day 70, the ECM composition was expanded by increased deposition of fibronectin, whereas connective tissue growth factor, fibroblast growth factor (FGF)-1, and FGF-2 mRNA expression levels were elevated in addition to TGF-beta1. In parallel, the number of pancreatic stellate cells (PSC) increased over time. In vitro, TGF-beta1 stimulated collagen type I expression but not fibronectin expression in PSC, in contrast to FGF-2, which stimulated both. This confirms that TGF-beta1 mediates pancreatic fibrosis through activation of PSC and deposition of collagen type I and III at early time points. Furthermore, this points to an indirect mechanism in which TGF-beta regulates pancreatic ECM assembly by induction of additional growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号