首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Plakophilins are proteins of the armadillo family that function in embryonic development and in the adult, and when mutated can cause disease. We have ablated the plakophilin 2 gene in mice. The resulting mutant mice exhibit lethal alterations in heart morphogenesis and stability at mid-gestation (E10.5-E11), characterized by reduced trabeculation, disarrayed cytoskeleton, ruptures of cardiac walls, and blood leakage into the pericardiac cavity. In the absence of plakophilin 2, the cytoskeletal linker protein desmoplakin dissociates from the plaques of the adhering junctions that connect the cardiomyocytes and forms granular aggregates in the cytoplasm. By contrast, embryonic epithelia show normal junctions. Thus, we conclude that plakophilin 2 is important for the assembly of junctional proteins and represents an essential morphogenic factor and architectural component of the heart.  相似文献   

3.
Cell morphogenesis requires dynamic reorganization of the actin cytoskeleton, a process that is tightly regulated by the Rho family of small GTPases. These GTPases act as molecular switches by shuttling between their inactive GDP-bound and active GTP-bound forms. Here we show that Nir2, a novel protein related to Drosophila retinal degeneration B (RdgB), markedly affects cell morphology through a novel Rho-inhibitory domain (Rid) which resides in its N-terminal region. Rid exhibits sequence homology with the Rho-binding site of formin-homology (FH) proteins and leads to an apparent loss of F-actin staining when ectopically expressed in mammalian cells. We also show that Rid inhibits Rho-mediated stress fiber formation and lysophosphatidic acid-induced RhoA activation. Biochemical studies demonstrated that Nir2, via Rid, preferentially binds to the inactive GDP-bound form of the small GTPase Rho. Microinjection of antibodies against Nir2 into neuronal cells markedly attenuates neurite extension, whereas overexpression of Nir2 in these cells attenuates Rho-mediated neurite retraction. These results implicate Nir2 as a novel regulator of the small GTPase Rho in actin cytoskeleton reorganization and cell morphogenesis.  相似文献   

4.
5.
6.
7.
8.
9.
We have identified a novel gene, trishanku (triA), by random insertional mutagenesis of Dictyostelium discoideum. TriA is a Broad complex Tramtrack bric-a-brac domain-containing protein that is expressed strongly during the late G2 phase of cell cycle and in presumptive spore (prespore (psp)) cells. Disrupting triA destabilizes cell fate and reduces aggregate size; the fruiting body has a thick stalk, a lowered spore: stalk ratio, a sub-terminal spore mass and small, rounded spores. These changes revert when the wild-type triA gene is re-expressed under a constitutive or a psp-specific promoter. By using short- and long-lived reporter proteins, we show that in triA(-) slugs the prestalk (pst)/psp proportion is normal, but that there is inappropriate transdifferentiation between the two cell types. During culmination, regardless of their current fate, all cells with a history of pst gene expression contribute to the stalk, which could account for the altered cell-type proportion in the mutant.  相似文献   

10.
11.
12.
13.
Slit is a secreted guidance cue that conveys repellent or attractive signals from target and guidepost cells. In Drosophila, responsive cells express one or more of three Robo receptors. The cardial cells of the developing heart express both Slit and Robo2. This is the first report of coincident expression of a Robo and its ligand. In slit mutants, cardial cell alignment, polarization and uniform migration are disrupted. The heart phenotype of robo2 mutants is similar, with fewer migration defects. In the guidance of neuronal growth cones in Drosophila, there is a phenotypic interaction between slit and robo heterozygotes, and also with genes required for Robo signaling. In contrast, in the heart, slit has little or no phenotypic interaction with Robo-related genes, including Robo2, Nck2, and Disabled. However, there is a strong phenotypic interaction with Integrin genes and their ligands, including Laminin and Collagen, and intracellular messengers, including Talin and ILK. This indicates that Slit participates in adhesion or adhesion signaling during heart development.  相似文献   

14.
We screened for genes specifically expressed in the mesenchymes of developing hair follicles using representational differential analysis; one gene identified was MAEG, which encodes a protein consisting of five EGF-like repeats, a linker segment containing a cell-adhesive Arg-Gly-Asp (RGD) motif, and a MAM domain. Immunohistochemistry showed that MAEG protein was localized at the basement membrane of embryonic skin and developing hair follicles, while MAEG expression diminished at the tip of the hair bud. A recombinant MAEG fragment containing the RGD motif was active in mediating adhesion of keratinocytes to the substratum in an RGD-dependent manner. One of the adhesion receptors recognizing the RGD motif was found to be the alpha8beta1 integrin, the expression of which was detected in the placode close to MAEG-positive mesenchymal cells, but later became restricted to the tip of the developing hair bud. Given its localized expression at the basement membrane in developing hair follicles and the RGD-dependent cell-adhesive activity, MAEG may play a role as a mediator regulating epithelial-mesenchymal interaction through binding to RGD-binding integrins including alpha8beta1 during hair follicle development.  相似文献   

15.
GATA4 is a dosage-sensitive regulator of cardiac morphogenesis   总被引:15,自引:0,他引:15  
  相似文献   

16.
17.
In budding yeast, G2/M transition is tightly correlated with bud morphogenesis regulated by Swe1 and septin that plays as a scaffold to recruits protein components. BNI5 isolated as a suppressor for septin defect is implicated in septin organization and cytokinesis. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we show that Bni5 phosphorylation is required for mitotic entry regulated by Swe1 pathway. Bni5 modification was evident from late mitosis to G1 phase, and CIP treatment in vitro of affinity-purified Bni5 removed the modification, indicative of phosphorylation on Bni5. The phosphorylation-deficient mutant of BNI5 (bni5-4A) was defective in both growth at semi-restrictive temperature and suppression of septin defect. Loss of Bni5 phosphorylation resulted in abnormal bud morphology and cell cycle delay at G2 phase, as evidenced by the formation of elongated cells with multinuclei. However, deletion of Swe1 completely eliminated the elongated-bud phenotypes of both bni5 deletion and bni5-4A mutants. These results suggest that the bud morphogenesis and mitotic entry are positively regulated by phosphorylation-dependent function of Bni5 which is under the control of Swe1 morphogenesis pathway.  相似文献   

18.
Neuronostatin, a recently discovered peptide encoded by somatostatin gene, is involved in regulation of neuronal function, blood pressure, food intake, and drinking behavior. However, the biological effects of neuronostatin on cardiac myocytes are not known, and the intracellular signaling mechanisms induced by neuronostatin remain unidentified. We analyzed the effect of neuronostatin in isolated perfused rat hearts and in cultured primary cardiomyocytes. Neuronostatin infusion alone had no effect on left ventricular (LV) contractile function or on isoprenaline- or preload-induced increase in cardiac contractility. However, infusion of neuronostatin significantly decreased the positive inotropic response to endothelin-1 (ET-1). This was associated with an increase in phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK). Treatment of both neonatal and adult cardiomyocytes with neuronostatin resulted in reduced cardiomyocyte viability. Inhibition of JNK further increased the neuronostatin-induced cell death. We conclude that neuronostatin regulates cardiac contractile function and cardiomyocyte survival. Receptors for neuronostatin need to be identified to further characterize the biological functions of the peptide.  相似文献   

19.
Ren N  He B  Stone D  Kirakodu S  Adler PN 《Genetics》2006,172(3):1643-1653
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular- and tissue-level morphogenesis. The developing hairs are filled with F-actin and microtubules and the activity of these cytoskeletons is important for hair morphogenesis. On the basis of mutant phenotypes several genes have been identified as playing a key role in stimulating hair formation. Mutations in shavenoid (sha) (also known as kojak) result in a delay in hair morphogenesis and in some cells forming no hair and others several small hairs. We report here the molecular identification and characterization of the sha gene and protein. sha encodes a large novel protein that has homologs in other insects, but not in more distantly related organisms. The Sha protein accumulated in growing hairs and bristles in a pattern that suggested that it could directly interact with the actin cytoskeleton. Consistent with this mechanism of action we found that Sha and actin co-immunopreciptated from wing disc cells. The morphogenesis of the hair involves temporal control by sha and spatial control by the genes of the frizzled planar polarity pathway. We found a strong genetic interaction between mutations in these genes consistent with their having a close but parallel functional relationship.  相似文献   

20.
Uroplakin (UP)3a is critical for urinary tract development and function; however, its role in these processes is unknown. We examined the function of the UP3a-like protein Upk3l, which was expressed at the apical surfaces of the epithelial cells that line the pronephric tubules (PTs) of the zebrafish pronephros. Embryos treated with upk3l-targeted morpholinos showed decreased pronephros function, which was attributed to defects in PT epithelial cell morphogenesis and polarization including: loss of an apical brush border and associated phospho-ERM proteins, apical redistribution of the basolateral Na(+)/K(+)-ATPase, and altered or diminished expression of the apical polarity complex proteins Prkcz (atypical protein kinase C zeta) and Pard3 (Par3). Upk3l missing its C-terminal cytoplasmic domain or containing mutations in conserved tyrosine or proline residues did not rescue, or only partially rescued the effects of Upk3l depletion. Our studies indicate that Upk3l promotes epithelial polarization and morphogenesis, likely by forming or stimulating interactions with cytoplasmic signaling or polarity proteins, and that defects in this process may underlie the pathology observed in UP3a knockout mice or patients with renal abnormalities that result from altered UP3a expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号