首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linkage disequilibrium (LD, association of allelic states across loci) is poorly understood by many evolutionary biologists, but as technology for multilocus sampling improves, we ignore LD at our peril. If we sample variation at 10 loci in an organism with 20 chromosomes, we can reasonably treat them as 10 ‘independent witnesses’ of the evolutionary process. If instead, we sample variation at 1000 loci, many are bound to be close together on a chromosome. With only one or two crossovers per meiosis, associations between close neighbours decay so slowly that even LD created far in the past will not have dissipated, so we cannot treat the 1000 loci as independent witnesses (Barton 2011 ). This means that as marker density on genomes increases classic analyses assuming independent loci become mired in the problem of overconfidence: if 1000 independent witnesses are assumed, and that number should be much lower, any conclusion will be overconfident. This is of special concern because our literature suffers from a strong publication bias towards confident answers, even when they turn out to be wrong (Knowles 2008 ). In contrast, analyses that take into account associations across loci both control for overconfidence and can inform us about LD generating events far in the past, for example human/Neanderthal admixture (Fu et al. 2014 ). With increased marker density, biologists must increase their awareness of LD and, in this issue of Molecular Ecology Resources, Kemppainen et al. ( 2015 ) make software available that can only help in this process: LDna allows patterns of LD in a data set to be explored using tools borrowed from network analysis. This has great potential, but realizing that potential requires understanding LD.  相似文献   

2.
Sabatti C  Risch N 《Genetics》2002,160(4):1707-1719
We illustrate how homozygosity of haplotypes can be used to measure the level of disequilibrium between two or more markers. An excess of either homozygosity or heterozygosity signals a departure from the gametic phase equilibrium: We describe the specific form of dependence that is associated with high (low) homozygosity and derive various linkage disequilibrium measures. They feature a clear biological interpretation, can be used to construct tests, and are standardized to allow comparison across loci and populations. They are particularly advantageous to measure linkage disequilibrium between highly polymorphic markers.  相似文献   

3.
Gorelick R  Laubichler MD 《Genetics》2004,166(3):1581-1583
We present a mathematically precise formulation of total linkage disequilibrium between multiple loci as the deviation from probabilistic independence and provide explicit formulas for all higher-order terms of linkage disequilibrium, thereby combining J. Dausset et al.'s 1978 definition of linkage disequilibrium with H. Geiringer's 1944 approach. We recursively decompose higher-order linkage disequilibrium terms into lower-order ones. Our greatest simplification comes from defining linkage disequilibrium at a single locus as allele frequency at that locus. At each level, decomposition of linkage disequilibrium is mathematically equivalent to number theoretic compositions of positive integers; i.e., we have converted a genetic decomposition into a mathematical decomposition.  相似文献   

4.
Positional cloning by linkage disequilibrium   总被引:6,自引:0,他引:6       下载免费PDF全文
Recently, metric linkage disequilibrium (LD) maps that assign an LD unit (LDU) location for each marker have been developed (Maniatis et al. 2002). Here we present a multiple pairwise method for positional cloning by LD within a composite likelihood framework and investigate the operating characteristics of maps in physical units (kb) and LDU for two bodies of data (Daly et al. 2001; Jeffreys et al. 2001) on which current ideas of blocks are based. False-negative indications of a disease locus (type II error) were examined by selecting one single-nucleotide polymorphism (SNP) at a time as causal and taking its allelic count (0, 1, or 2, for the three genotypes) as a pseudophenotype, Y. By use of regression and correlation, association between every pseudophenotype and the allelic count of each SNP locus (X) was based on an adaptation of the Malecot model, which includes a parameter for location of the putative gene. By expressing locations in kb or LDU, greater power for localization was observed when the LDU map was fitted. The efficiency of the kb map, relative to the LDU map, to describe LD varied from a maximum of 0.87 to a minimum of 0.36, with a mean of 0.62. False-positive indications of a disease locus (type I error) were examined by simulating an unlinked causal SNP and the allele count was used as a pseudophenotype. The type I error was in good agreement with Wald's likelihood theorem for both metrics and all models that were tested. Unlike tests that select only the most significant marker, haplotype, or haploset, these methods are robust to large numbers of markers in a candidate region. Contrary to predictions from tagging SNPs that retain haplotype diversity, the sample with smaller size but greater SNP density gave less error. The locations of causal SNPs were estimated with the same precision in blocks and steps, suggesting that block definition may be less useful than anticipated for mapping a causal SNP. These results provide a guide to efficient positional cloning by SNPs and a benchmark against which the power of positional cloning by haplotype-based alternatives may be measured.  相似文献   

5.
An approach to the investigation of the evolution of quantitative traits on the basis of analysis of two-locus marginal systems dynamics has been developed. It has been shown that under stabilizing selection the "quasi-stationary" state is quickly reached and maintained continuously. The "quasi-stationary" state is characterized by small changes in allele frequencies and by linkage disequilibrium that significantly decreases genotypic variance. Equations defining the role of linkage disequilibrium in the stationary state of mutation-selection balance are derived.  相似文献   

6.
Inferences about linkage disequilibrium.   总被引:32,自引:0,他引:32  
B S Weir 《Biometrics》1979,35(1):235-254
Existing theory for inferences about linkage disequilibrium is restricted to a measure defined on gametic frequencies. Unless gametic frequencies are directly observable, they are inferred from genotypic frequencies under the assumption of random union of gametes. Primary emphasis in this paper is given to genotypic data, and disequilibrium coefficients are defined for all subsets of two or more of the four genes, two at each of two loci, carried by an individual. Linkage disequilibrium coefficients are defined for genes within and between gametes, and methods of estimating and testing these coefficients are given for gametic data. For genotypic data, when coupling and repulsion double heterozygotes cannot be distinguished. Burrows' composite measure of linkage disequilibrium is discussed. In particular, the estimate for this measure and hypothesis tests based on it are compared to the usual maximum likelihood estimate of gametic linkage disequilibrium, and corresponding likelihood ratio or contingency chi-square tests. General use of the composite measure, whether or not random union of gametes is an appropriate assumption, is recommended. Attention is given to small samples, where the non-normality of gene frequencies will have greatest effect on methods of inference based on normal theory. Even tools such as Fisher's z-transformation for the correlation of gene frequencies are found to perform quite satisfactorily.  相似文献   

7.

Background

A major QTL for fatness and growth, denoted FAT1, has previously been detected on pig chromosome 4q (SSC4q) using a Large White – wild boar intercross. Progeny that carried the wild boar allele at this locus had higher fat deposition, shorter length of carcass, and reduced growth. The position and the estimated effects of the FAT1 QTL for growth and fatness have been confirmed in a previous study. In order to narrow down the QTL interval we have traced the inheritance of the wild boar allele associated with high fat deposition through six additional backcross generations.

Results

Progeny-testing was used to determine the QTL genotype for 10 backcross sires being heterozygous for different parts of the broad FAT1 region. The statistical analysis revealed that five of the sires were segregating at the QTL, two were negative while the data for three sires were inconclusive. We could confirm the QTL effects on fatness/meat content traits but not for the growth traits implying that growth and fatness are controlled by distinct QTLs on chromosome 4. Two of the segregating sires showed highly significant QTL effects that were as large as previously observed in the F2 generation. The estimates for the remaining three sires, which were all heterozygous for smaller fragments of the actual region, were markedly smaller. With the sample sizes used in the present study we cannot with great confidence determine whether these smaller effects in some sires are due to chance deviations, epistatic interactions or whether FAT1 is composed of two or more QTLs, each one with a smaller phenotypic effect. Under the assumption of a single locus, the critical region for FAT1 has been reduced to a 3.3 cM interval between the RXRG and SDHC loci.

Conclusion

We have further characterized the FAT1 QTL on pig chromosome 4 and refined its map position considerably, from a QTL interval of 70 cM to a maximum region of 20 cM and a probable region as small as 3.3 cM. The flanking markers for the small region are RXRG and SDHC and the orthologous region of FAT1 in the human genome is located on HSA1q23.3 and harbors approximately 20 genes. Our strategy to further refine the map position of this major QTL will be i) to type new markers in our pigs that are recombinant in the QTL interval and ii) to perform Identity-By-Descent (IBD) mapping across breeds that have been strongly selected for lean growth.  相似文献   

8.
LDA--a java-based linkage disequilibrium analyzer   总被引:7,自引:0,他引:7  
SUMMARY: We describe an integrated java-based program that provides elaborate graphic and plain-text output of pairwise linkage disequilibrium (LD) analysis of single nucleotide polymorphisms genotypic data. It is most suitable for molecular geneticists, who are focusing on LD measures estimation, statistical significance test and extent prediction. AVAILABILITY: The software is available at: http://www.chgb.org.cn/lda/lda.htm. SUPPLEMENTARY INFORMATION: Detailed tutorials, LDA help system and examples are distributed within LDA software. For Macintosh OS X user, the Jre version 1.4 can be downloaded from http://connect.apple.com.  相似文献   

9.
We describe the use of multivariate regression for testing allelic association in the presence of linkage, using marker genotype data from sibships. The test is valid, provided that the correct mean structure is modeled but does not require the correlation structure within families to be specified. The test can be implemented using standard statistical software such as the SAS programming language. In a simulation study, we evaluated this new test in comparison with one from a standard, matched-case-control analysis. First, we noted that the genetic effect needed to be quite extreme before residual familial correlation due to linkage led to false inference using the standard, matched-pair analysis. Second, we showed that under examples of extreme residual familial correlation, the new test had the correct test size. Third, we found that the test was more powerful than the sibship disequilibrium test of Horvath and Laird. Finally, we concluded that although the standard analysis may lead to correct inference for practical purposes, the new test is valid, even under extreme residual familial correlation and with no cost in power at the causal locus.  相似文献   

10.
The lowdown on linkage disequilibrium   总被引:18,自引:0,他引:18       下载免费PDF全文
Gaut BS  Long AD 《The Plant cell》2003,15(7):1502-1506
  相似文献   

11.
Many of the economically important traits in chicken are multifactorial and governed by multiple genes located at different quantitative trait loci (QTLs). The optimal marker density to identify these QTLs in linkage and association studies is largely determined by the extent of linkage disequilibrium (LD) around them. In this study, we investigated the extent of LD on two chromosomes in a white layer and two broiler chicken breeds. Pairwise levels of LD were calculated for 33 and 36 markers on chromosomes 10 and 28, respectively. We found that useful LD (i.e. an r(2) value higher than 0.3) in Nutreco chicken breed E5 (inbred) can extend to around 1 cM on chromosomes 10 and 28, although in a second region on chromosome 28 it extends to about 2.5 cM. The extent in breed Nutreco E3 (outbred) was very short in chromosome 10 (15 kb) but very much larger on chromosome 28, particularly in one region of depressed heterozygosity. The layer breed E2 (inbred) showed an extent of useful LD up to 4 cM on chromosome 10; the extent on chromosome 28 could not be assessed due to an erratic pattern of LD on that chromosome, although in one region LD appears to be in the order of 0.8 cM. This indicates that there may be very large differences in patterns of LD between different chicken breeds and different genomic regions.  相似文献   

12.
Joint linkage and linkage disequilibrium mapping in natural populations   总被引:5,自引:0,他引:5  
Wu R  Zeng ZB 《Genetics》2001,157(2):899-909
A new strategy for studying the genome structure and organization of natural populations is proposed on the basis of a combined analysis of linkage and linkage disequilibrium using known polymorphic markers. This strategy exploits a random sample drawn from a panmictic natural population and the open-pollinated progeny of the sample. It is established on the principle of gene transmission from the parental to progeny generation during which the linkage between different markers is broken down due to meiotic recombination. The strategy has power to simultaneously capture the information about the linkage of the markers (as measured by recombination fraction) and the degree of their linkage disequilibrium created at a historic time. Simulation studies indicate that the statistical method implemented by the Fisher-scoring algorithm can provide accurate and precise estimates for the allele frequencies, recombination fractions, and linkage disequilibria between different markers. The strategy has great implications for constructing a dense linkage disequilibrium map that can facilitate the identification and positional cloning of the genes underlying both simple and complex traits.  相似文献   

13.
A genealogical interpretation of linkage disequilibrium   总被引:3,自引:0,他引:3  
McVean GA 《Genetics》2002,162(2):987-991
The degree of association between alleles at different loci, or linkage disequilibrium, is widely used to infer details of evolutionary processes. Here I explore how associations between alleles relate to properties of the underlying genealogy of sequences. Under the neutral, infinite-sites assumption I show that there is a direct correspondence between the covariance in coalescence times at different parts of the genome and the degree of linkage disequilibrium. These covariances can be calculated exactly under the standard neutral model and by Monte Carlo simulation under different demographic models. I show that the effects of population growth, population bottlenecks, and population structure on linkage disequilibrium can be described through their effects on the covariance in coalescence times.  相似文献   

14.
Effectiveness of marker-assisted selection (MAS) and quantitative trait loci (QTL) mapping using population-wide linkage disequilibrium (LD) between markers and QTL depends on the extent of LD and how it declines with distance in a population. Because marker-QTL LD cannot be observed directly, the objective of this study was to evaluate alternative measures of observable LD between multi-allelic markers as predictors of usable LD of multi-allelic markers with presumed biallelic QTL. Observable LD between marker pairs was evaluated using eight existing measures and one new measure. These consisted of two pooled and standardized measures of LD between pairs of alleles at two markers based on Lewontin's LD measure, two pooled measures of squared correlations between alleles, one standardized measure using Hardy-Weinberg heterozygosities, and four measures based on the chi-square statistic for testing for association between alleles at two loci. In simulated populations with a range of LD generated by drift and a range of marker polymorphism, marker-marker LD measured by a standardized chi-square statistic (denoted chi(2')) was found to be the best predictor of useable marker-QTL LD for a group of multi-allelic markers. Estimates of the level and decline of marker-marker LD with distance obtained from chi(2') were linearly and highly correlated with usable LD of those markers with QTL across population structures and marker polymorphism. Corresponding relationships were poorer for the other marker-marker LD measures. Therefore, when LD is generated by drift, chi(2') is recommended to quantify the amount and extent of usable LD in a population for QTL mapping and MAS based on multi-allelic markers.  相似文献   

15.
Most linkage programs assume linkage equilibrium among multiple linked markers. This assumption may lead to bias for tightly linked markers where strong linkage disequilibrium (LD) exists. We used simulated data from Genetic Analysis Workshop 14 to examine the possible effect of LD on multipoint linkage analysis. Single-nucleotide polymorphism packets from a non-disease-related region that was generated with LD were used for both model-free and parametric linkage analyses. Results showed that high LD among markers can induce false-positive evidence of linkage for affected sib-pair analysis when parental data are missing. Bias can be eliminated with parental data and can be reduced when additional markers not in LD are included in the analyses.  相似文献   

16.
Effectiveness of marker-assisted selection (MAS) and quantitative trait locus (QTL) mapping using population-wide linkage disequilibrium (LD) between markers and QTLs depends on the extent of LD and how it declines with distance between markers and QTLs in a population. Marker-QTL LD can be predicted from LD between markers. Our previous work evaluated LD measures between multi-allelic markers as predictors of usable LD of multi-allelic markers with QTLs. Since single nucleotide polymorphisms (SNPs) are the current marker of choice for high-density genotyping and LD-mapping of QTLs, the objective of this study was to use LD between multi-allelic markers to predict LD among biallelic SNPs or between SNPs and QTLs. Observable LD between multi-allelic markers was evaluated using nine measures. These included two pooled and standardized measures of LD between pairs of alleles at two markers based on Lewontin's LD measure, two pooled measures of squared correlations between alleles, one standardized measure using Hardy-Weinberg heterozygosities, and four measures based on the chi-square statistic for testing for association between alleles at two loci. The standardized chi-square measure that best predicted usable LD between multi-allelic markers and QTLs, based on our previous work, overestimated usable SNP-SNP or SNP-QTL LD. Instead, three other measures were found to be good predictors of usable SNP-SNP or SNP-QTL LD when LD is generated by drift. Therefore, the LD measure between multi-allelic markers that is best for predicting usable LD in a population depends on the type of markers (i.e. multi-allelic or biallelic) that will eventually be used for QTL mapping or MAS.  相似文献   

17.
Knowledge of the extent and range of linkage disequilibrium (LD), defined as non-random association of alleles at two or more loci, in animal populations is extremely valuable in localizing genes affecting quantitative traits, identifying chromosomal regions under selection, studying population history, and characterizing/managing genetic resources and diversity. Two commonly used LD measures, r(2) and D', and their permutation based adjustments, were evaluated using genotypes of more than 6,000 pigs from six commercial lines (two terminal sire lines and four maternal lines) at ~4,500 autosomal SNPs (single nucleotide polymorphisms). The results indicated that permutation only partially removed the dependency of D' on allele frequency and that r(2) is a considerably more robust LD measure. The maximum r(2) was derived as a function of allele frequency. Using the same genotype dataset, the extent of LD in these pig populations was estimated for all possible syntenic SNP pairs using r(2) and the ratio of r(2) over its theoretical maximum. As expected, the extent of LD highest for SNP pairs was found in tightest linkage and decreased as their map distance increased. The level of LD found in these pig populations appears to be lower than previously implied in several other studies using microsatellite genotype data. For all pairs of SNPs approximately 3 centiMorgan (cM) apart, the average r(2) was equal to 0.1. Based on the average population-wise LD found in these six commercial pig lines, we recommend a spacing of 0.1 to 1 cM for a whole genome association study in pig populations.  相似文献   

18.
There is extensive evidence from model systems that disrupting associations between co-adapted mitochondrial and nuclear genotypes can lead to deleterious and even lethal consequences. While it is tempting to extrapolate from these observations and make inferences about the human-health effects of altering mitonuclear associations, the importance of such associations may vary greatly among species, depending on population genetics, demographic history and other factors. Remarkably, despite the extensive study of human population genetics, the statistical associations between nuclear and mitochondrial alleles remain largely uninvestigated. We analysed published population genomic data to test for signatures of historical selection to maintain mitonuclear associations, particularly those involving nuclear genes that encode mitochondrial-localized proteins (N-mt genes). We found that significant mitonuclear linkage disequilibrium (LD) exists throughout the human genome, but these associations were generally weak, which is consistent with the paucity of population genetic structure in humans. Although mitonuclear LD varied among genomic regions (with especially high levels on the X chromosome), N-mt genes were statistically indistinguishable from background levels, suggesting that selection on mitonuclear epistasis has not preferentially maintained associations involving this set of loci at a species-wide level. We discuss these findings in the context of the ongoing debate over mitochondrial replacement therapy.  相似文献   

19.
Single-marker linkage-disequilibrium (LD) methods cannot fully describe disequilibrium in an entire chromosomal region surrounding a disease allele. With the advent of myriad tightly linked microsatellite markers, we have an opportunity to extend LD analysis from single markers to multiple-marker haplotypes. Haplotype analysis has increased statistical power to disclose the presence of a disease locus in situations where it correctly reflects the historical process involved. For maximum efficiency, evidence of LD ought to come not just from a single haplotype, which may well be rare, but in addition from many similar haplotypes that could have descended from the same ancestral founder but have been trimmed in succeeding generations. We present such an analysis, called the "trimmed-haplotype method." We focus on chromosomal regions that are small enough that disequilibrium in significant portions of them may have been preserved in some pedigrees and yet that contain enough markers to minimize coincidental occurrence of the haplotype in the absence of a disease allele: perhaps regions 1-2 cM in length. In general, we could have no idea what haplotype an ancestral founder carried generations ago, nor do we usually have a precise chromosomal location for the disease-susceptibility locus. Therefore, we must search through all possible haplotypes surrounding multiple locations. Since such repeated testing obliterates the sampling distribution of the test, we employ bootstrap methods to calculate significance levels. Trimmed-haplotype analysis is performed on family data in which genotypes have been assembled into haplotypes. It can be applied either to conventional parent-affected-offspring triads or to multiplex pedigrees. We present a method for summarizing the LD evidence, in any pedigree, that can be employed in trimmed-haplotype analysis as well as in other methods.  相似文献   

20.
Quantitative trait loci (QTL) affecting the phenotype of interest can be detected using linkage analysis (LA), linkage disequilibrium (LD) mapping or a combination of both (LDLA). The LA approach uses information from recombination events within the observed pedigree and LD mapping from the historical recombinations within the unobserved pedigree. We propose the Bayesian variable selection approach for combined LDLA analysis for single-nucleotide polymorphism (SNP) data. The novel approach uses both sources of information simultaneously as is commonly done in plant and animal genetics, but it makes fewer assumptions about population demography than previous LDLA methods. This differs from approaches in human genetics, where LDLA methods use LA information conditional on LD information or the other way round. We argue that the multilocus LDLA model is more powerful for the detection of phenotype–genotype associations than single-locus LDLA analysis. To illustrate the performance of the Bayesian multilocus LDLA method, we analyzed simulation replicates based on real SNP genotype data from small three-generational CEPH families and compared the results with commonly used quantitative transmission disequilibrium test (QTDT). This paper is intended to be conceptual in the sense that it is not meant to be a practical method for analyzing high-density SNP data, which is more common. Our aim was to test whether this approach can function in principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号