首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Gan L  Petsko GA  Hedstrom L 《Biochemistry》2002,41(44):13309-13317
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the conversion of IMP to XMP with the reduction of NAD(+), which is the rate-limiting step in the biosynthesis of guanine nucleotides. IMPDH is a promising target for chemotherapy. Microbial IMPDHs differ from mammalian enzymes in their lower affinity for inhibitors such as mycophenolic acid (MPA) and thiazole-4-carboxamide adenine dinucleotide (TAD). Part of this resistance is determined by the coupling between nicotinamide and adenosine subsites in the NAD(+) binding site that is postulated to involve an active site flap. To understand the structural basis of the drug selectivity, we solved the X-ray crystal structure of the catalytic core domain of Tritrichomonas foetus IMPDH in complex with IMP and beta-methylene-TAD at 2.2 A resolution. Unlike previous structures of this enzyme, the active site loop is ordered in this complex, and the catalytic Cys319 is 3.6 A from IMP, in the same plane as the hypoxanthine ring. The active site loop forms hydrogen bonds to the carboxamide of beta-Me-TAD which suggests that NAD(+) promotes the nucleophillic attack of Cys319 on IMP. The interactions of the adenosine end of TAD are very different from those in the human enzyme, suggesting the NAD(+) site may be an exploitable target for the design of antimicrobial drugs. In addition, a new K(+) site is observed at the subunit interface. This site is adjacent to beta-Me-TAD, consistent with the link between the K(+) activation and NAD(+). However, contrary to the coupling model, the flap does not cover the adenosine subsite and remains largely disordered.  相似文献   

2.
IMP dehydrogenase (IMPDH) catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+). This reaction involves the formation of a covalent adduct with an active site Cys. This intermediate, E-XMP, hydrolyzes to produce XMP. The mutation of Asp338 to Ala severely impairs the activity of Escherichia coli IMPDH, decreasing the value of k(cat) by 650-fold. No (D)V(m) or (D)V/K(m) isotope effects are observed when 2-(2)H-IMP is the substrate for wild-type IMPDH. Values of (D)V(m) = 2.6 and (D)V/K(m) (IMP) = 3.4 are observed for Asp338Ala. Moreover, while a burst of NADH production is observed for wild-type IMPDH, no burst is observed for Asp338Ala. These observations indicate that the mutation has decreased the rate of hydride transfer by at least 5 x 10(3)-fold. In contrast, k(cat) for the hydrolysis of 2-chloroinosine-5'-monophosphate is decreased by only 8-fold. In addition, the rate constant for inactivation by 6-chloropurine riboside 5'-monophosphate is increased by 3-fold. These observations suggest that the mutation has little effect on the nucleophilicity of the active site Cys residue. These results are consistent with a recent crystal structure that shows a hydrogen bonding network between Asp338, the 2'-OH of IMP, and the amide group of NAD(+) [Colby, T. D., Vanderveen, K., Strickler, M. D., Markham, G. D., and Goldstein, B. M. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 3531-3536].  相似文献   

3.
L Hedstrom  C C Wang 《Biochemistry》1990,29(4):849-854
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) with the conversion of NAD to NADH. An ordered sequential mechanism where IMP is the first substrate bound and XMP is the last product released was proposed for Tritrichomonas foetus IMPDH on the basis of product inhibition studies. Thiazole adenine dinucleotide (TAD) is an uncompetitive inhibitor versus IMP and a noncompetitive inhibitor versus NAD, which suggests that TAD binds to both E-IMP and E-XMP. Mycophenolic acid is also an uncompetitive inhibitor versus IMP and noncompetitive versus NAD. Multiple-inhibitor experiments show that TAD and mycophenolic acid are mutually exclusive with each other and with NADH. Therefore, mycophenolic acid most probably binds to the dinucleotide site of T. foetus IMPDH. The mycophenolic acid binding site was further localized to the nicotinamide subsite within the dinucleotide site: mycophenolic acid was mutually exclusive with tiazofurin, but could form ternary enzyme complexes with ADP or adenosine diphosphate ribose. NAD inhibits the IMPDH reaction at concentrations greater than 3 mM. NAD substrate inhibition is uncompetitive versus IMP, which suggests that NAD inhibits by binding to E-XMP. TAD is mutually exclusive with both NAD and NADH in multiple-inhibitor experiments, which suggests that there is one dinucleotide binding site. The ordered mechanism predicts that multiple-inhibitor experiments with XMP and TAD, mycophenolic acid, or NAD should have an interaction constant (alpha) between 0 and 1. However, alpha was greater than 1 in all cases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The first committed step of guanine nucleotide biosynthesis is the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP) catalyzed by IMP dehydrogenase. The reaction involves the reduction of NAD(+) with the formation of a covalent enzyme intermediate (E-XMP). Hydrolysis of E-XMP requires the enzyme to adopt a closed conformation and is rate-limiting. Thr321, Arg418, and Tyr419 are candidates for the residue that activates water. The substitution of Thr321 has similar, but small, effects on both the hydride transfer and hydrolysis steps. This result suggests that Thr321 influences the reactivity of Cys319, either through a direct interaction or by stabilizing the structure of the active site loop. The hydrolysis of E-XMP is accelerated by the deprotonation of a residue with a pK(a) of approximately 8. A similar deprotonation stabilizes the closed conformation; this residue has a pK(a) of >or=6 in the closed conformation. The substitution of Tyr419 with Phe does not change the pH dependence of either the hydrolysis of E-XMP or the conformational change, which suggests that Tyr419 is not the residue that activates water. In contrast, the conformational change becomes pH-independent when Arg418 is substituted with Gln. Lys can replace the function of Arg418 in the hydrolysis reaction but does not stabilize the closed conformation. The simplest explanation for these observations is that Arg418 serves as the base that activates water in the IMPDH reaction.  相似文献   

5.
The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.  相似文献   

6.
Markham GD  Bock CL  Schalk-Hihi C 《Biochemistry》1999,38(14):4433-4440
Inosine-5'-monophosphate dehydrogenase (IMPDH) catalyzes the K+-dependent reaction IMP + NAD + H2O --> XMP + NADH + H+ which is the rate-limiting step in guanine nucleotide biosynthesis. The catalytic mechanism of the human type-II IMPDH isozyme has been studied by measurement of the pH dependencies of the normal reaction, of the hydrolysis of 2-chloro-IMP (which yields XMP and Cl- in the absence of NAD), and of inactivation by the affinity label 6-chloro-purine-ribotide (6-Cl-PRT). The pH dependence of the IMPDH reaction shows bell-shaped profiles for kcat and the kcat/Km values for both IMP and NAD, illustrating the involvement of both acidic and basic groups in catalysis. Half-maximal kcat values occur at pH values of 7.2 and 9.8; similar pK values of 6.9 and 9.4 are seen in the kcat/Km profile for NAD. The kcat/Km profile for IMP, which binds first in the predominantly ordered kinetic mechanism, shows pK values of 8.1 and 7.3 for acidic and basic groups, respectively. None of the kinetic pK values correspond to ionizations of the free substrates and thus reflect ionization of the enzyme or enzyme-substrate complexes. The rate of inactivation by 6-Cl-PRT, which modifies the active site sulfhydryl of cysteine-331, increases with pH; the pK of 7.5 reflects the ionization of the sulfhydryl in the E.6-Cl-PRT complex. The pKs of the acids observed in the IMPDH reaction likely also reflect ionization of the cysteine-331 sulfhydryl which adds to C-2 of IMP prior to NAD reduction. The kcat and kcat/Km values for hydrolysis of 2-Cl-IMP show a pK value of 9.9 for a basic group, similar to that seen in the overall reaction, but do not exhibit the ionization of an acidic group. Surprisingly, the rates of 2-Cl-IMP hydrolysis and of inactivation by 6-Cl-PRT are not stimulated by K+, in contrast to the >100-fold K+ activation of the IMPDH reaction. Apparently the enigmatic role of K+ lies in the NAD(H)-dependent segment of the IMPDH reaction. To evaluate the importance of hydrogen bonding in substrate binding, several deamino- and deoxy-analogues of IMP were tested as substrates and inhibitors. Only 2'-deoxy-IMP was a substrate; the other compounds tested were competitive inhibitors with Ki values at most 10-fold greater than the KD for IMP, illustrating the greater importance of hydrogen-bonding interactions in the chemistry of the IMPDH reaction than simply in nucleotide binding.  相似文献   

7.
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in GMP biosynthesis. The resulting intracellular pool of guanine nucleotides is of great importance to all cells for use in DNA and RNA synthesis, metabolism, and signal transduction. The enzyme binds IMP and the cofactor NAD(+) in random order, IMP is converted to XMP, NAD(+) is reduced to NADH, and finally, NADH and then XMP are released sequentially. XMP is subsequently converted into GMP by GMP synthetase. Drugs that decrease GMP synthesis by inhibiting IMPDH have been shown to have antiproliferative as well as antiviral activity. Several drugs are in use that target the substrate- or cofactor-binding site; however, due to differences between the mammalian and microbial isoforms, most drugs are far less effective against the microbial form of the enzyme than the mammalian form. The high resolution crystal structures of the protozoan parasite Tritrichomonas foetus IMPDH complexed with the inhibitor ribavirin monophosphate as well as monophosphate together with a second inhibitor, mycophenolic acid, are presented here. These structures reveal an active site cation identified previously only in the Chinese hamster IMPDH structure with covalently bound IMP. This cation was not found previously in apo IMPDH, IMPDH in complex with XMP, or covalently bound inhibitor, indicating that the cation-binding site may be catalysis-dependent. A comparison of T. foetus IMPDH with the Chinese hamster and Streptococcus pyogenes structures reveals differences in the active site loop architecture, which contributes to differences in cation binding during the catalytic sequence and the kinetic rates between bacterial, protozoan, and mammalian enzymes. Exploitation of these differences may lead to novel inhibitors, which favor the microbial form of the enzyme.  相似文献   

8.
The enzyme inosine monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide biosynthesis. Because it is up-regulated in rapidly proliferating cells, human type II IMPDH is actively targeted for immunosuppressive, anticancer, and antiviral chemotherapy. The enzyme employs a random-in ordered-out kinetic mechanism where substrate or cofactor can bind first but product is only released after the cofactor leaves. Due to structural and kinetic differences between mammalian and microbial enzymes, most drugs that are successful in the inhibition of mammalian IMPDH are far less effective against the microbial forms of the enzyme. It is possible that with greater knowledge of the structural mechanism of the microbial enzymes, an effective and selective inhibitor of microbial IMPDH will be developed for use as a drug against multi-drug resistant bacteria and protists. The high-resolution crystal structures of four different complexes of IMPDH from the protozoan parasite Tritrichomonas foetus have been solved: with its substrate IMP, IMP and the inhibitor mycophenolic acid (MPA), the product XMP with MPA, and XMP with the cofactor NAD(+). In addition, a potassium ion has been located at the dimer interface. A structural model for the kinetic mechanism is proposed.  相似文献   

9.
Digits JA  Hedstrom L 《Biochemistry》1999,38(8):2295-2306
IMP dehydrogenase (IMPDH) catalyzes the oxidation of IMP to XMP with conversion of NAD+ to NADH. This reaction is the rate-limiting step in de novo guanine nucleotide biosynthesis. IMPDH is a target for antitumor, antiviral, and immunosuppressive chemotherapy. We have determined the complete kinetic mechanism for IMPDH from Tritrichomonas foetus using ligand binding, isotope effect, pre-steady-state kinetic, and rapid quench kinetic experiments. Both substrates bind to the free enzyme, which suggests a random mechanism. IMP binds to the enzyme in two steps. Two steps are also involved when IMP binds to a mutant IMPDH in which the active site Cys is substituted with a Ser. This observation suggests that this second step may be a conformational change of the enzyme. No Vm isotope effect is observed when [2-2H]IMP is the substrate which indicates that hydride transfer is not rate-limiting. This result is confirmed by the observation of a pre-steady-state burst of NADH production when monitored by absorbance. However, when NADH production was monitored by fluorescence, the rate constant for the exponential phase is 5-10-fold lower than when measured by absorbance. This observation suggests that the fluorescence of enzyme-bound NADH is quenched and that this transient represents NADH release from the enzyme. The time-dependent formation and decay of [14C]E-XMP intermediates was monitored using rapid quench kinetics. These experiments indicate that both NADH release and E-XMP hydrolysis are rate-limiting and suggest that NADH release precedes hydrolysis of E-XMP.  相似文献   

10.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.  相似文献   

11.
Mizoribine monophosphate (MZP) is the active metabolite of the immunosuppressive agent mizoribine and a potent inhibitor of IMP dehydrogenase (IMPDH). This enzyme catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD via a covalent intermediate at Cys319 (E-XMP). Surprisingly, mutational analysis indicates that MZP is a transition state analogue although its structure does not resemble that of the expected transition state. Here we report the X-ray crystal structure of the E.MZP complex at 2.0 A resolution that reveals a transition state-like structure and solves the mechanistic puzzle of the IMPDH reaction. The protein assumes a new conformation where a flap folds into the NAD site and MZP, Cys319, and a water molecule are arranged in a geometry resembling the transition state. The water appears to be activated by interactions with a conserved Arg418-Tyr419 dyad. Mutagenesis experiments confirm that this new closed conformation is required for the hydrolysis of E-XMP, but not for the reduction of NAD. The closed conformation provides a structural explanation for the differences in drug selectivity and catalytic efficiency of IMPDH isozymes.  相似文献   

12.
Direct assay method for inosine 5'-monophosphate dehydrogenase activity   总被引:1,自引:0,他引:1  
A rapid microassay method for the accurate measurement of the activity of inosine 5'-monophosphate dehydrogenase in crude tissue extracts was described. [8-14C]IMP and the radioactive products were separated by high-voltage electrophoresis in 0.1 M potassium phosphate buffer, pH 7.0, for 45 min. This separation method provides an analysis of the possible interfering reactions such as the metabolic conversion of the substrate IMP to inosine and adenylosuccinate, and the loss of the product XMP to xanthosine or GMP and to other metabolites. Low blank values were consistently obtained with this method because the XMP spot moves faster than the IMP spot. The major advantages of this assay method are direct measurement of IMP dehydrogenase activity in crude extracts, high sensitivity (with a limit of detection of 5 pmol of XMP production), high reproducibility (less than +/- 3.6%), low blank values (60-80 cpm), speed (2 h per 30 assays), and capability to measure activity in small amounts of tissue (10-50 mg wet wt).  相似文献   

13.
X-ray crystal structures of enzyme-ligand complexes are widely believed to mimic states in the catalytic cycle, but this presumption has seldom been carefully scrutinized. In the case of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase (IMPDH), 10 structures of various enzyme-substrate-inhibitor complexes have been determined. The Cys319 loop is found in at least three different conformations, suggesting that its conformation changes as the catalytic cycle progresses from the dehydrogenase step to the hydrolase reaction. Alternatively, only one conformation of the Cys319 loop may be catalytically relevant while the others are off-pathway. Here we differentiate between these two hypotheses by analyzing the effects of Ala substitutions at three residues of the Cys319 loop, Arg322, Glu323, and Gln324. These mutations have minimal effects on the value of k(cat) (≤5-fold) that obscure large effects (>10-fold) on the microscopic rate constants for individual steps. These substitutions increase the equilibrium constant for the dehydrogenase step but decrease the equilibrium between open and closed conformations of a mobile flap. More dramatic effects are observed when Arg322 is substituted with Glu, which decreases the rates of hydride transfer and hydrolysis by factors of 2000 and 130, respectively. These experiments suggest that the Cys319 loop does indeed have different conformations during the dehydrogenase and hydrolase reactions as suggested by the crystal structures. Importantly, these experiments reveal that the structure of the Cys319 loop modulates the closure of the mobile flap. This conformational change converts the enzyme from a dehydrogenase into hydrolase, suggesting that the conformation of the Cys319 loop may gate the catalytic cycle.  相似文献   

14.
Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 ? from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.  相似文献   

15.
Orotidine 5'-monophosphate (OMP) decarboxylase from Plasmodium falciparum (PfODCase, EC 4.1.1.23) has been overexpressed, purified, subjected to kinetic and biochemical analysis, and crystallized. The native enzyme is a homodimer with a subunit molecular mass of 38 kDa. The saturation curve for OMP as a substrate conformed to Michaelis-Menten kinetics with K m = 350 +/- 60 nM and V max = 2.70 +/- 0.10 micromol/min/mg protein. Inhibition patterns for nucleoside 5'-monophosphate analogues were linear competitive with respect to OMP with a decreasing potency of inhibition of PfODCase in the order: pyrazofurin 5'-monophosphate ( K i = 3.6 +/- 0.7 nM) > xanthosine 5'-monophosphate (XMP, K i = 4.4 +/- 0.7 nM) > 6-azauridine 5'-monophosphate (AzaUMP, K i = 12 +/- 3 nM) > allopurinol-3-riboside 5'-monophosphate ( K i = 240 +/- 20 nM). XMP is an approximately 150-fold more potent inhibitor of PfODCase compared with the human enzyme. The structure of PfODCase was solved in the absence of ligand and displays a classic TIM-barrel fold characteristic of the enzyme. Both the phosphate-binding loop and the betaalpha5-loop have conformational flexibility, which may be associated with substrate capture and product release along the reaction pathway.  相似文献   

16.
Barnes BJ  Eakin AE  Izydore RA  Hall IH 《Biochemistry》2000,39(45):13641-13650
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo purine biosynthesis. IMPDH activity results from expression of two isoforms. Type I is constitutively expressed and predominates in normal resting cells, while Type II is selectively up-regulated in neoplastic and replicating cells. Inhibitors of IMPDH activity selectively targeting the Type II isoform have great potential as cancer chemotherapeutic agents. For this study, an expression system was developed which yields 35-50 mg of soluble, purified recombinant Type I and II protein from 1 L of bacteria. In addition, three 1,5-diazabicyclo[3.1.0]hexane-2,4-diones were synthesized and shown to act as specific inhibitors of human recombinant Type II IMPDH. The agents are competitive inhibitors with respect to the endogenous substrate IMP and K(i) values range from 5 to 44 microM but were inactive as inhibitors of the Type I isoform at concentrations ranging from 0.5 to 500 microM. IC(50) values for recombinant Type II inhibition were determined and compared to IC(50) values obtained from Molt-4 cell extracts of IMPDH. Cytotoxicity assays revealed that the compounds inhibited Molt-4 leukemia growth with ED(50) values of 3.2-7.6 microM. Computational docking studies predict that the compounds bind to IMPDH in the IMP-binding site, although interactions with residues differ from those previously determined to interact with bound IMP. While all residues predicted to interact directly with the bound compounds are conserved in the Type I and Type II isoforms, sequence divergence within a helix adjacent to the active site may contribute to the observed selectivity for the human Type II isoform. These compounds represent the first class of selective IMPDH Type II inhibitors which may serve as lead compounds for the development of isoform-selective cancer chemotherapy.  相似文献   

17.
Background: A novel bacterial esterase that cleaves esters on halogenated cyclic compounds has been isolated from an Alcaligenes species. This esterase 713 is encoded by a 1062 base pair gene. The presence of a leader sequence of 27 amino acids suggests that this enzyme is exported from the cytosol. Esterase 713 has been over-expressed in Agrobacterium without this leader sequence. Its amino acid sequence shows no significant homology to any known protein sequence. Results: The crystal structure of esterase 713 has been determined by multiple isomorphous replacement and refined to 1. 1 A resolution. The subunits of this dimeric enzyme comprise a single domain with an alpha/beta hydrolase fold. The catalytic triad has been identified as Ser206-His298-Glu230. The acidic residue of the catalytic triad (Glu230) is located on the beta6 strand of the alpha/beta hydrolase fold, whereas most other alpha/beta hydrolase enzymes have the acidic residue located on the beta7 strand. The oxyanion hole is formed by the mainchain nitrogens of Cys71 and Gln207 as identified by the binding of a substrate analogue, (S)-7-iodo-2,3,4,5-tetrahydro-4-methyl-3-oxo-1H-1, 4-benzodiazepine-2-acetic acid. Cys71 forms a disulphide bond with the neighbouring Cys72. Conclusions: Despite negligible sequence homology, esterase 713 has structural similarities to a number of other esterases and lipases. Residues of the oxyanion hole were confirmed by structural comparison with Rhizomucor miehei lipase. It is proposed that completion of a functional active site requires the formation of the disulphide bond between adjacent residues Cys71 and Cys72 on export of the esterase into the oxidising environment of the periplasmic space.  相似文献   

18.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate with the concomitant reduction of NAD to NADH. Escherichia coli IMPDH is activated by K(+), Rb(+), NH(+)(4), and Cs(+). K(+) activation is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). This inhibition is competitive versus K(+) at high K(+) concentrations, noncompetitive versus IMP, and competitive versus NAD. Thus monovalent cation activation is linked to the NAD site. K(+) increases the rate constant for the pre-steady-state burst of NADH production, possibly by increasing the affinity of NAD. Three mutant IMPDHs have been identified which increase the value of K(m) for K(+): Asp13Ala, Asp50Ala, and Glu469Ala. In contrast to wild type, both Asp13Ala and Glu469Ala are activated by all cations tested. Thus these mutations eliminate cation selectivity. Both Asp13 and Glu469 appear to interact with the K(+) binding site identified in Chinese hamster IMPDH. Like wild-type IMPDH, K(+) activation of Asp50Ala is inhibited by Li(+), Na(+), Ca(2+), and Mg(2+). However, this inhibition is noncompetitive with respect to K(+) and competitive with respect to both IMP and NAD. Asp50 interacts with residues that form a rigid wall in the IMP site; disruption of this wall would be expected to decrease IMP binding, and the defect could propagate to the proposed K(+) site. Alternatively, this mutation could uncover a second monovalent cation binding site.  相似文献   

19.
Y Yamada  Y Natsumeda  G Weber 《Biochemistry》1988,27(6):2193-2196
The inhibitory mechanisms of ribavirin 5'-monophosphate (RMP) and thiazole-4-carboxamide adenine dinucleotide (TAD), the active forms of the antimetabolites ribavirin and tiazofurin, were investigated in IMP dehydrogenase purified to homogeneity from rat hepatoma 3924A. The hepatoma IMP dehydrogenase has a tetrameric structure with a subunit molecular weight of 60,000. For the substrates IMP and NAD+, Km's were 23 and 65 microM, respectively. Product-inhibition patterns showed an ordered Bi-Bi mechanism for the enzyme reaction where IMP binds to the enzyme first, followed by NAD+; NADH dissociates from the ternary complex first and then XMP is released. XMP interacts with the free enzyme and competes for the ligand site with IMP, while NADH binds to the enzyme-XMP complex. RMP exerted the same inhibitory mechanisms as XMP, and the inhibition by TAD was similar to that by NADH. However, the Ki values for RMP (0.8 microM) and TAD (0.13 microM) were orders of magnitude lower than those of XMP (136 microM) and NADH (210 microM). Thus, the drugs interact with IMP dehydrogenase with higher affinities than the natural substrates and products, RMP with the IMP-XMP site and TAD with the NADH site. Preincubation of the purified enzyme with RMP enhanced its inhibitory effect in a time-dependent manner. The enzyme was protected from this inactivation by IMP or XMP. These results provide a biochemical basis for combination chemotherapy with tiazofurin and ribavirin targeted against the two different ligand sites of IMP dehydrogenase.  相似文献   

20.
猪链球菌2型次黄嘌呤核苷酸脱氢酶基因的克隆与鉴定   总被引:10,自引:0,他引:10  
根据GenBank猪链球菌2型(SS2)报道序列,对江苏分离株SS2-H部分测序,发现位于已知毒力基因orf2与mrp之间存在两个新的开放阅读框序列。选取可能含有抗原决定簇肽段对应的核酸序列,该阅读框(2738~3694)编码319个氨基酸残基,分子量为33.5kDa,与已知任何基因无同源性。通过InterPro、PHD、DNAstar分析阅读框,并定向克隆至pET-32α( )载体中,转化至大肠杆菌BL21,表达出分子量为48kDa的融合蛋白,蛋白免疫转印可被SS2的抗血清识别,具有免疫原性;并且含有IMP dehydrogenase结构域,催化IMP生成XMP;流式细胞仪检测该蛋白可明显影响HEp-2细胞周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号