首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmission of Lyme disease spirochetes (Borrelia burgdorferi)   总被引:1,自引:0,他引:1  
The field and laboratory evidence incriminating nymphalIxodes dammini as the main vectors ofBorrelia burgdorferi is substantial. Furthermore, other members of theIxodes (Ixodes) ricinus complex, includingI. ricinus, I. persulcatus, I. pacificus, andI. scapularis, are competent vectors of the Lyme disease spirochete. Although ticks in other genera are also naturally infected withB. burgdorferi, experimental evidence suggests thatAmblyomma andDermacentor ticks are inefficient vectors of these spirochetes. Current research on the kinetics ofB. burgdorferi growth within ticks demonstrates that Lyme disease spirochetes are dramatically influenced by physiological events during the tick's life-cycle.  相似文献   

2.
3.
Ixodes ricinus ticks and mice can be infected with both Borrelia burgdorferi sensu stricto and Borrelia garinii. The effect of coinfection with these two Borrelia species on the development of murine Lyme borreliosis is unknown. Therefore, we investigated whether coinfection with the nonarthritogenic B. garinii strain PBi and the arthritogenic B. burgdorferi sensu stricto strain B31 alters murine Lyme borreliosis. Mice simultaneously infected with PBi and B31 showed significantly more paw swelling and arthritis, long-standing spirochetemia, and higher numbers of B31 spirochetes than did mice infected with B31 alone. However, the number of PBi spirochetes was significantly lower in coinfected mice than in mice infected with PBi alone. In conclusion, simultaneous infection with B. garinii and B. burgdorferi sensu stricto results in more severe Lyme borreliosis. Moreover, we suggest that competition of the two Borrelia species within the reservoir host could have led to preferential maintenance, and a rising prevalence, of B. burgdorferi sensu stricto in European I. ricinus populations.  相似文献   

4.
In spite of significant advances in immunologically based testing, accurate diagnosis of Lyme borreliosis remains problematic. To address this issue, a DNA amplification-based diagnostic test was developed utilizing the polymerase chain reaction (PCR) and oligonucleotide primers specific for the OspA and OspB genes of Borrelia burgdorferi. In this approach, a relatively large DNA fragment is amplified with an outer set of primers, and a "nested" internal sequence of the PCR product subsequently reamplified with an inner set of primers. This nested approach coupled with simple differential centrifugation allowed specific detection of as few as four B. burgdorferi organisms mixed in 2 ml of blood. This methodology was utilized on patients' samples, and it allowed detection of B. burgdorferi in the peripheral blood and urine of several individuals with clinical evidence of Lyme borreliosis. PCR became negative and symptoms improved following antibiotic therapy of treated individuals. These studies suggest that direct detection of Borrelia in infected individuals can aid in diagnosis and evaluation of therapy for Lyme borreliosis.  相似文献   

5.
Plant and animal biodiversity are essential to ecosystem health and can provide benefits to humans ranging from aesthetics to maintaining air quality. Although the importance of biodiversity to ecology and conservation biology is obvious, such measures have not been applied to strains of an invasive bacterium found in human tissues during infection. In this study, we compared the strain biodiversity of Borrelia burgdorferi found in tick populations with that found in skin, blood, synovial fluid or cerebrospinal fluid of Lyme disease patients. The biodiversity of B. burgdorferi strains is significantly greater in tick populations than in the skin of patients with erythema migrans. In turn, strains from skin are significantly more diverse than strains at any of the disseminated sites. The cerebrospinal fluid of patients with neurologic Lyme disease harbored the least pathogen biodiversity. These results suggest that human tissues act as niches that can allow entry to or maintain only a subset of the total pathogen population. These data help to explain prior clinical observations on the natural history of B. burgdorferi infection and raise several questions that may help to direct future research to better understand the pathogenesis of this infection.  相似文献   

6.
Lyme disease is the most common vector-borne disease in the United States. The causative agent is the spirochete Borrelia burgdorferi. The copy number and organization of the genes encoding the rRNAs of this organism were determined. There is a single gene for 16S rRNA and two copies each of the 23S rRNA and 5S rRNA genes. All of the genes are located within a chromosomal fragment of approximately 9.5 to 10.0 kb. The 23S and 5S rRNA genes are tandemly duplicated in the order 23S-5S-23S-5S and are apparently not linked to the 16S rRNA gene, which is situated over 2 kb upstream from the 23S-5S duplication. The individual copies of the 23S-5S duplication are separated by a 182-bp spacer. Within each 23S-5S unit, an identical 22-bp spacer separates the 23S and 5S rRNA sequences from each other. The genome organization of the 23S-5S gene cluster in a number of different B. burgdorferi isolates obtained at a number of different geographical locations, as well as in several other species of Borrelia, was investigated. All isolates of B. burgdorferi tested displayed the tandem duplication, whereas the closely related species B. hermsii, B. anserina, and B. turicatae all contained a single copy of each of the genes. In addition, different geographical isolates of B. burgdorferi can be differentiated on the basis of a restriction fragment length polymorphism associated with the 23S-5S gene cluster. This polymorphism can be a useful tool for the determination of genetic relatedness between different isolates of B. burgdorferi.  相似文献   

7.
The restriction-modification (R-M) systems of many bacteria present a barrier to the stable introduction of foreign DNA. The Lyme disease spirochete Borrelia burgdorferi has two plasmid-borne putative R-M genes, bbe02 and bbq67, whose presence limits transformation by shuttle vector DNA from Escherichia coli. We show that both the bbe02 and bbq67 loci in recipient B. burgdorferi limit transformation with shuttle vector DNA from E. coli, irrespective of its dam, dcm, or hsd methylation status. However, plasmid DNA purified from B. burgdorferi transformed naïve B. burgdorferi much more efficiently than plasmid DNA from E. coli, particularly when the bbe02 and bbq67 genotypes of the B. burgdorferi DNA source matched those of the recipient. We detected adenine methylation of plasmid DNA prepared from B. burgdorferi that carried bbe02 and bbq67. These results indicate that the bbe02 and bbq67 loci of B. burgdorferi encode distinct R-M enzymes that methylate endogenous DNA and cleave foreign DNA lacking the same sequence-specific modification. Our findings have basic implications for horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. Further characterization and identification of the nucleotide sequences recognized by BBE02 and BBQ67 will facilitate efficient genetic manipulation of this pathogenic spirochete.Borrelia burgdorferi sensu lato is a zoonotic pathogen whose natural infectious cycle alternates between a tick vector and rodent or bird reservoir hosts (1, 7, 8, 14, 32, 33, 36). Transmission of B. burgdorferi to humans occurs through the bite of an infected tick and can lead to Lyme disease, which is a major public health concern in areas of North America and Europe where B. burgdorferi is endemic (8, 53).The genomic structure of the spirochete B. burgdorferi is unique, consisting of a linear chromosome of approximately 900 kb and more than 20 linear (lp) and circular (cp) plasmids, ranging in size from ∼5 kb to 56 kb, in the type strain B31 (9, 10, 11, 19, 42). The plasmids of B. burgdorferi are present at unit copy number relative to the chromosome (22), and some are relatively unstable during in vitro propagation (52, 57). The loss of linear plasmids lp25, lp28-1, and lp36 by strain B31 was found to correlate with the loss of infectivity in mice (20, 31, 45, 56), leading to the identification of genes carried on these plasmids that are dispensable in vitro but required in vivo during an experimental infectious cycle (21, 26, 35, 44, 47). The loss of two linear plasmids, lp25 and lp56, was shown to correlate with enhanced shuttle vector transformation, suggesting that specific lp25 and lp56 gene products present a barrier to stable introduction of foreign DNA (34). Further studies linked the transformation phenotype of B. burgdorferi strain B31 with the bbe02 and bbq67 genes on lp25 and lp56, respectively, and the putative restriction-modification (R-M) enzymes that they encode (11, 27, 29, 34). The recent demonstration by Chen and colleagues of enhanced transformation of B. burgdorferi following in vitro methylation of DNA (13) further supports the hypothesis that these B. burgdorferi plasmids encode R-M enzymes that degrade foreign DNA lacking the appropriate modification.The barrier to foreign DNA presented by the bbe02 and bbq67 loci of B. burgdorferi implies that genomic DNA should be modified in spirochetes carrying these plasmid genes. To test this hypothesis, we compared the transformation of B. burgdorferi with shuttle vector DNA isolated from either Escherichia coli or B. burgdorferi, as outlined in Fig. Fig.1.1. We also examined whether and how the presence of putative R-M genes in either the donor or recipient B. burgdorferi strain influenced transformation. Finally, we analyzed the type of modification present on DNA isolated from B. burgdorferi with different plasmid or gene contents. Our data indicate that the bbe02 and bbq67 loci of B. burgdorferi encode enzymes that both methylate endogenous DNA and restrict foreign DNA lacking these modifications. These findings have basic implications regarding horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. These results also help elucidate the molecular mechanisms underlying the relative inefficiency of genetic transformation of B. burgdorferi and suggest ways in which genetic manipulation of this pathogenic spirochete could be enhanced.Open in a separate windowFIG. 1.Shuttle vector transformations. Schematic representation of the various DNA sources, strains and methods used to assess the contributions of bbe02 and bbq67 to the restriction-modification (R-M) systems of B. burgdorferi.  相似文献   

8.
To fight, flee or hide are the imperatives of long-term survival by an infectious microbe. Active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, and incursion into immune privileged sites are examples of survival strategies of persistent pathogens. Here we critically review the supporting evidence for possible stratagems utilized by Borrelia burgdorferi, the spirochete that causes Lyme disease, to persist in the mammalian host.  相似文献   

9.
We compared the relative infectivity to vector ticks of gray catbirds (Dumetella carolinensis) and white-footed mice (Peromyscus leucopus) for the Lyme disease spirochete (Borrelia burgdorferi). Of 28 catbirds captured in a site enzootic for this agent, 18 were infested by immature Ixodes dammini, the tick vector. By comparison, each of 32 mice sampled concurrently from the same site was infested, and by about 10 times as many ticks as were found infesting the 3 most commonly netted bird species. Although 76% of noninfected larval ticks placed on these mice in a xenodiagnosis became infected, none of the ticks similarly placed on 12 catbirds did so. Spirochetes were detected in ticks derived from 2 Carolina wrens (Thryothorus ludovicianus) and a common yellowthroat (Geothlypis trichas), but these species' potential contribution to infecting ticks does not compare with that of mice. Thus, although birds may help establish new foci of ticks, catbirds, at least, do not appear to contribute as reservoirs of infection.  相似文献   

10.
Motility and chemotaxis are believed to be important in the pathogenesis of Lyme disease caused by the spirochete Borrelia burgdorferi. Controlling the phosphorylation state of CheY, a response regulator protein, is essential for regulating bacterial chemotaxis and motility. Rapid dephosphorylation of phosphorylated CheY (CheY-P) is crucial for cells to respond to environmental changes. CheY-P dephosphorylation is accomplished by one or more phosphatases in different species, including CheZ, CheC, CheX, FliY, and/or FliY/N. Only a cheX phosphatase homolog has been identified in the B. burgdorferi genome. However, a role for cheX in chemotaxis has not been established in any bacterial species. Inactivating B. burgdorferi cheX by inserting a flgB-kan cassette resulted in cells (cheX mutant cells) with a distinct motility phenotype. While wild-type cells ran, paused (stopped or flexed), and reversed, the cheX mutant cells continuously flexed and were not able to run or reverse. Furthermore, swarm plate and capillary tube chemotaxis assays demonstrated that cheX mutant cells were deficient in chemotaxis. Wild-type chemotaxis and motility were restored when cheX mutant cells were complemented with a shuttle vector expressing CheX. Furthermore, CheX dephosphorylated CheY3-P in vitro and eluted as a homodimer in gel filtration chromatography. These findings demonstrated that B. burgdorferi CheX is a CheY-P phosphatase that is essential for chemotaxis and motility, which is consistent with CheX being the only CheY-P phosphatase in the B. burgdorferi chemotaxis signal transduction pathway.  相似文献   

11.
Binding of glycosaminoglycans (GAGs) by Borrelia burgdorferi, the Lyme disease spirochete, has the potential to promote the colonization of diverse tissues. GAG binding by B. burgdorferi is associated with haemagglutination and we have identified a 26 kDa protein, which we have termed Bgp (Borrelia GAG-binding protein), on the basis of its ability to bind to heparin and erythrocytes. Bgp was found in outer membrane fractions of B. burgdorferi and on the surface of intact bacteria, as assayed by labelling with a membrane-impermeable biotinylating agent or anti-Bgp antibodies. Purified recombinant Bgp agglutinated erythrocytes, binds to the same spectrum of GAGs as the B. burgdorferi strain from which the cloned bgp sequence was obtained, and inhibited B. burgdorferi binding to purified GAGs and to cultured mammalian cells. Thus, Bgp is a strong candidate for a GAG-binding adhesin of B. burgdorferi.  相似文献   

12.
No useful method to genetically manipulate Borrelia burgdorferi, the causative agent of Lyme disease, has been developed previously. We have used resistance to the coumarin antibiotic coumermycin A1, an inhibitor of DNA gyrase, as a genetic marker to monitor the transformation of B. burgdorferi by electroporation. Introduction of site-directed mutations into the gyrB gene demonstrated that transformation was successful, provided evidence that homologous recombination occurs on the chromosome, and established that mutations at Arg-133 of DNA gyrase B confer coumermycin A1 resistance in B. burgdorferi. The coumermycin A1-resistant gyrB marker and genetic transformation can now be applied toward dissecting the physiology and pathogenesis of the Lyme disease agent on a molecular genetic level.  相似文献   

13.
The structure of the 60 kDa pyrophosphate (PP(i))-dependent phosphofructokinase (PFK) from Borrelia burgdorferi has been solved and refined (R(free) = 0.243) at 2.55 A resolution. The domain structure of eubacterial ATP-dependent PFKs is conserved in B. burgdorferi PFK, and there are three large insertions relative to E. coli PFK, including a helical domain containing a hairpin structure that interacts with the active site. Asp177, conserved in all PP(i) PFKs, negates the binding of the alpha-phosphate group of ATP and likely contacts the essential Mg(2+) cation via a water molecule. Asn181 blocks the binding of the adenine moiety of ATP. Lys203 hydrogen bonds to a sulfate anion that likely mimics PP(i) substrate binding.  相似文献   

14.
VlsE is an outer surface lipoprotein of Borrelia burgdorferi that undergoes antigenic variation through an elaborate gene conversion mechanism and is thought to play a major role in the immune response to the Lyme disease borellia. The crystal structure of recombinant variant protein VlsE1 at 2.3-A resolution reveals that the six variable regions form loop structures that constitute most of the membrane distal surface of VlsE, covering the predominantly alpha-helical, invariant regions of the protein. The surface localization of the variable amino acid segments appears to protect the conserved regions from interaction with antibodies and hence may contribute to immune evasion.  相似文献   

15.
16.
Hfq is a global regulatory RNA‐binding protein. We have identified and characterized an atypical Hfq required for gene regulation and infectivity in the Lyme disease spirochete Borrelia burgdorferi. Sequence analyses of the putative B. burgdorferi Hfq protein revealed only a modest level of similarity with the Hfq from Escherichia coli, although a few key residues are retained and the predicted tertiary structure is similar. Several lines of evidence suggest that the B. burgdorferi bb0268 gene encodes a functional Hfq homologue. First, the hfqBb gene (bb0268) restores the efficient translation of an rpoS::lacZ fusion in an E. coli hfq null mutant. Second, the Hfq from B. burgdorferi binds to the small RNA DsrABb and the rpoS mRNA. Third, a B. burgdorferi hfq null mutant was generated and has a pleiotropic phenotype that includes increased cell length and decreased growth rate, as found in hfq mutants in other bacteria. The hfqBb mutant phenotype is complemented in trans with the hfq gene from either B. burgdorferi or, surprisingly, E. coli. This is the first example of a heterologous bacterial gene complementing a B. burgdorferi mutant. The alternative sigma factor RpoS and the outer membrane lipoprotein OspC, which are induced by increased temperature and required for mammalian infection, are not upregulated in the hfq mutant. Consequently, the hfq mutant is not infectious by needle inoculation in the murine model. These data suggest that Hfq plays a key role in the regulation of pathogenicity factors in B. burgdorferi and we hypothesize that the spirochete has a complex Hfq‐dependent sRNA network.  相似文献   

17.
The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance.  相似文献   

18.
Seven hamsters, experimentally infected with Borrelia burgdorferi, were examined by both cultural and histological techniques at 1 to 9 months postinfection. Spirochetes were detected in the spleen, kidney, or eye of all animals by culture and in the spleen, kidney, eye, liver, or heart blood of five of seven animals by histological examination. Two animals showed nonspecific hepatic portal lymphocytic infiltration, while five of the hamsters displayed no significant histologic signs of inflammation or granuloma formation in the major organ systems. Synovitis and arthropathy did not occur. All animals showed some degree of follicular lymphoid hyperplasia of the spleen. Spirochetes were predominantly extracellular with a rare organism appearing to be partially within a macrophage.  相似文献   

19.
A physical map of the 952kbp chromosome of Borrelia burgdorferi Sh-2-82 has been constructed. Eighty-three intervals on the chromosome, defined by the cleavage sites of 15 restriction enzymes, are delineated. The intervals vary in size from 96kbp to a few hundred bp, with an average size of 11.5 kbp. A striking feature of the map is its linearity; no other bacterial groups are known to have linear chromosomes. The two ends of the chromosome do not hybridize with one another, indicating that there are no large common terminal regions. The chromosome of this strain was found to be stable in culture; passage 6, 165 and 320 cultures have identical chromosomal restriction maps. We have positioned all previously known Borrelia burgdorferi chromosomal genes and several newly identified ones on this map. These include the gyrA/gyrB/dnaA/dnaN gene cluster, the rRNA gene cluster, fla, flgE, groEL (hsp60), recA, the rho/hip cluster, the dnaK (hsp70)/dnaJ/grpE cluster, the pheT/pheS cluster, and the genes which encode the potent immunogen proteins p22A, p39 and p83. Our electrophoretic analysis detects five linear and at least two circular plasmids in B. burgdorferi Sh-2-82. We have constructed a physical map of the 53 kbp linear plasmid and located the operon that encodes the two major outer surface proteins ospA and ospB on this plasmid. Because of the absence of functional genetic tools for this organism, these maps will serve as a basis for future mapping, cloning and sequencing studies of B. burgdorferi.  相似文献   

20.
Lyme disease, a tick-borne disease caused by Borrelia burgdorferi, has been described recently in dogs. In a serologic survey of specimens obtained from March to September 1984, 53% of 380 dogs from two USDA licensed vendors in Wisconsin were positive for indirect immunofluorescent antibodies to B. burgdorferi at a serum dilution of 1:64 or greater. B. burgdorferi was cultured from the blood of 8/111 dogs. These findings suggest that exposure to this spirochete is common in endemic areas and that this zoonotic disease is of importance to veterinarians and researchers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号