共查询到20条相似文献,搜索用时 15 毫秒
1.
The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion 总被引:16,自引:0,他引:16
T Stegmann J M Delfino F M Richards A Helenius 《The Journal of biological chemistry》1991,266(27):18404-18410
The interaction between influenza virus and target membrane lipids during membrane fusion was studied with hydrophobic photoactivatable probes. Two probes, the newly synthesized bisphospholipid diphosphatidylethanolamine trifluoromethyl [3H]phenyl diazirine and the phospholipid analogue 1-palmitoyl-2(11-[4-[3-(trifluoromethyl)diazirinyl]phenyl]-[2-3H]- undecanoyl]-sn-glycero-3-phosphocholine (Harter, C., B?chi, T., Semenza, G., and Brunner , J. (1988) Biochemistry 27, 1856-1864), were used. Both labeled the HA2 subunit of the virus at low pH. By measuring virus-liposome interactions at 0 degrees C, it could be demonstrated that HA2 was inserted into the target membrane prior to fusion. As we have recently demonstrated, at this temperature, exposure of the fusion peptide of HA2 takes place within 15 s after acidification, but fusion does not start for 4 min (Stegmann, T., White, J. M., and Helenius, A. (1990) EMBO J. 9, 4231-4241). HA2 was labeled at least 2 min before fusion. No labeling of the HA1 subunit was seen. These data indicate that fusion is triggered by a direct interaction of the HA2 subunit of a kinetic intermediate form of HA with the lipids of the target membrane. Most likely, it is the fusion peptide of HA2 that is inserted into the target membrane. Just before fusion, HA is thus an integral membrane protein in both membranes. In contrast, the bromelain-derived ectodomain of HA was labeled by 1-palmitoyl-2(11-[4-[3-(trifluoromethyl)diazirinyl]phenyl]- [2-3H]undecanoyl)-sn-glycerol-3-phosphocholine at low pH but not by diphosphatidylethanolamine trifluoromethyl [3H]phenyl diazirine. This indicates that insertion of the fusion peptide of the bromelain-derived ectodomain of HA into a membrane differs from that of viral HA during fusion. 相似文献
2.
Kim CS Epand RF Leikina E Epand RM Chernomordik LV 《The Journal of biological chemistry》2011,286(15):13226-13234
One of the best characterized fusion proteins, the influenza virus hemagglutinin (HA), mediates fusion between the viral envelope and the endosomal membrane during viral entry into the cell. In the initial conformation of HA, its fusogenic subunit, the transmembrane protein HA2, is locked in a metastable conformation by the receptor-binding HA1 subunit of HA. Acidification in the endosome triggers HA2 refolding toward the final lowest energy conformation. Is the fusion process driven by this final conformation or, as often suggested, by the energy released by protein restructuring? Here we explored structural properties as well as the fusogenic activity of the full sized trimeric HA2(1–185) (here called HA2*) that presents the final conformation of the HA2 ectodomain. We found HA2* to mediate fusion between lipid bilayers and between biological membranes in a low pH-dependent manner. Two mutations known to inhibit HA-mediated fusion strongly inhibited the fusogenic activity of HA2*. At surface densities similar to those of HA in the influenza virus particle, HA2* formed small fusion pores but did not expand them. Our results confirm that the HA1 subunit responsible for receptor binding as well as the transmembrane and cytosolic domains of HA2 is not required for fusion pore opening and substantiate the hypothesis that the final form of HA2 is more important for fusion than the conformational change that generates this form. 相似文献
3.
Antigenic determinants of influenza virus hemagglutinin. V. Antigenicity of the HA2 chain 总被引:1,自引:0,他引:1
L E Brown T A Dopheide C W Ward D O White D C Jackson 《Journal of immunology (Baltimore, Md. : 1950)》1980,125(4):1583-1588
All the polypeptide fragments obtained by cyanogen bromide cleavage of the hemagglutinin from A/Memphis/102/72 influenza virus were examined for their ability to bind to IgG raised against purified virus. Within the hemagglutinin heavy chain the only fragment displaying antigenicity is HA1CN1, which comprises the amino-terminal 168 amino acid residues. By the use of a sensitive radioimmunoassay in which the antigen is unlabeled, it was shown that the light chain is also antigenic. Inhibition studies have localized the activity to the HA2CN1 region, which comprises the carboxy-terminal 90 amino acids. The determinant on HA2 is shown to be subtype specific. 相似文献
4.
M Tsurudome R Glück R Graf R Falchetto U Schaller J Brunner 《The Journal of biological chemistry》1992,267(28):20225-20232
Fusion of influenza viruses with target membranes is induced by acid and involves complex changes in the viral fusion protein hemagglutinin (HA) and in the contact sites between viruses and target membranes (Stegmann, T., White, J. M., and Helenius, A. (1990) EMBO J. 9, 4231-4241). At 0 degrees C, in a first, kinetically distinct step, target membranes irreversibly adhere to the viruses. Fusion itself starts only after a lag-phase of several minutes (X-31 strain viruses) or after raising the temperature (PR8/34 strain viruses). We now provide evidence that the initial conformational change resulting in virus-target membrane adhesion is restricted to a (minor) subpopulation of the HA molecules. These molecules become susceptible to bromelain digestion, and they could be labeled with the photoactivatable reagent [3H]PTPC/11, a nonexchangeable lipid present in the target lipid bilayer (Harter, C., B?chi, T., Semenza, G., and Brunner, J. (1988) Biochemistry 27, 1856-1864). Only the HA2 subunit was labeled, and analyses of 2-nitro-5-thio-cyanobenzoic acid fragments derived thereof indicate that the HA2 NH2-terminal segment (fusion peptide) inserted into the target membrane bilayer. When the temperature was raised to trigger fusion of PR8/34 viruses, labeling of HA2 increased by a factor of 130. Most (74%) of that label was incorporated into the COOH-terminal membrane anchor region, but there was also a strong increase (about 30-fold) of NH2-terminal fusion peptide labeling. This suggests that fusion is preceded., or accompanied, by further changes in HA which lead to additional extensive lipid insertions of HA2 fusion peptides. 相似文献
5.
Delay of influenza hemagglutinin refolding into a fusion-competent conformation by receptor binding: a hypothesis 下载免费PDF全文
Two subunits of influenza hemagglutinin (HA), HA1 and HA2, represent one of the best-characterized membrane fusion machines. While a low pH conformation of HA2 mediates the actual fusion, HA1 establishes a specific connection between the viral and cell membranes via binding to the sialic acid-containing receptors. Here we propose that HA1 may also be involved in modulating the kinetics of HA refolding. We hypothesized that binding of the HA1 subunit to its receptor restricts the major refolding of the low pH-activated HA to a fusion-competent conformation and, in the absence of fusion, to an HA-inactivated state. Dissociation of the HA1-receptor connection was considered to be a slow kinetic step. To verify this hypothesis, we first analyzed a simple kinetic scheme accounting for the stages of dissociation of the HA1/receptor bonds, inactivation and fusion, and formulated experimentally testable predictions. Second, we verified these predictions by measuring the extent of fusion between HA-expressing cells and red blood cells. Three experimental approaches based on 1) the temporal inhibition of fusion by lysophosphatidylcholine, 2) rapid dissociation of the HA1-receptor connections by neuraminidase treatment, and 3) substitution of membrane-anchored receptors by a water-soluble sialyllactose all provided support for the proposed role of the release of HA1-receptor connections. Possible biological implications of this stage in HA refolding and membrane fusion are being discussed. 相似文献
6.
E Leikina D L LeDuc J C Macosko R Epand R Epand Y K Shin L V Chernomordik 《Biochemistry》2001,40(28):8378-8386
Conformational changes in the HA2 subunit of influenza hemagglutinin (HA) are coupled to membrane fusion. We investigated the fusogenic activity of the polypeptide FHA2 representing 127 amino-terminal residues of the ectodomain of HA2. While the conformation of FHA2 both at neutral and at low pH is nearly identical to the final low-pH conformation of HA2, FHA2 still induces lipid mixing between liposomes in a low-pH-dependent manner. Here, we found that FHA2 induces lipid mixing between bound cells, indicating that the "spring-loaded" energy is not required for FHA2-mediated membrane merger. Although, unlike HA, FHA2 did not form an expanding fusion pore, both acidic pH and membrane concentrations of FHA2, required for lipid mixing, have been close to those required for HA-mediated fusion. Similar to what is observed for HA, FHA2-induced lipid mixing was reversibly blocked by lysophosphatidylcholine and low temperature, 4 degrees C. The same genetic modification of the fusion peptide inhibits both HA- and FHA2-fusogenic activities. The kink region of FHA2, critical for FHA2-mediated lipid mixing, was exposed in the low-pH conformation of the whole HA prior to fusion. The ability of FHA2 to mediate lipid mixing very similar to HA-mediated lipid mixing is consistent with the hypothesis that hemifusion requires just a portion of the energy released in the conformational change of HA at acidic pH. 相似文献
7.
Fusion of influenza virus with the endosomal membrane of the host cell is mediated by the homotrimer-organized glycoprotein hemagglutinin (HA). Its fusion activity is triggered by a low pH-mediated conformational change affecting the structure of the HA1 and HA2 subunits. The HA2 subunits undergo a loop-to-helix transition leading to a coiled-coil structure, a highly conserved motif for many fusion mediating viral proteins. However, experimental studies showed that the HA2 coiled-coil structure is stable at neutral and low pH, implying that there is no direct relationship between low pH and the HA2 loop-to-helix transition. To interpret this observation, we used a computational approach based on the dielectric continuum solvent model to explore the influence of water and pH on the free energy change of the transition. The computations showed that the electrostatic interaction between HA2 fragments and water is the major driving force of the HA2 loop-to-helix transition leading to the coiled-coil structure, as long as the HA1 globular domain covering the HA2 subunits in the nonfusion competent conformation is reorganized and thereby allows water molecules to interact with the whole loop segments of the HA2 subunits. Moreover, we show that the energy released by the loop-to-helix transition may account for those energies required for driving the subsequent steps of membrane fusion. Such a water-driven process may resemble a general mechanism for the formation of the highly conserved coiled-coil motif of enveloped viruses. 相似文献
8.
The genetic basis for virulence and host switching in influenza A viruses (FLUAV) is largely unknown. Because the hemagglutinin (HA) protein is a determinant of these properties, HA evolution was mapped in an experimental model of mouse lung adaptation. Variants of prototype A/Hong Kong/1/68 (H3N2) (wild-type [wt] HK) human virus were selected in both longitudinal and parallel studies of lung adaptation. Mapping of HA mutations found in 11 independently derived mouse-adapted populations of wt HK identified 27 mutations that clustered within two distinct regions in or near the globular frameworks of the HA1 and HA2 subunits. The adaptive mutations demonstrated multiple instances of convergent evolution involving four amino acid positions (162, 210, and 218 in HA1 and 154 in HA2). By use of reverse genetics, convergent HA mutations were shown to affect cell tropism by enhancing infection and replication in primary mouse tracheal epithelial cells in vitro and mouse lung tissue in vivo. Adaptive HA mutations were multifunctional, affecting both median pH of fusion and receptor specificity. Specific mutations within both adaptive regions were shown to increase virulence in a mouse lung model. The occurrence of mutations in the HA1 and HA2 adaptive regions of natural FLUAV host range and virulent variants of avian and mammalian viruses is discussed. This study has identified adaptive sites and regions within the HA1 and HA2 subunits that may guide future studies of viral adaptation and evolution in nature. 相似文献
9.
Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles 总被引:7,自引:0,他引:7
M Rafalski A Ortiz A Rockwell L C van Ginkel J D Lear W F DeGrado J Wilschut 《Biochemistry》1991,30(42):10211-10220
We have investigated the interaction of a number of synthetic 20-residue peptides, corresponding to the HA2 N-terminus of the influenza virus hemagglutinin (X31 strain), with phospholipid vesicles and monolayers. Besides the wild-type sequence, two peptides were studied with mutations corresponding to those previously studied in entire HA's expressed in transfected cells [Gething et al., (1986) J. Cell. Biol. 102, 11-23]. These mutations comprised a single Glu replacement for Gly at the N-terminus ("El" mutant) or at position 4 ("E4") of the HA2 subunit and were shown to produce striking alterations in virus-induced hemolysis and syncytia formation, especially for E1. The X31 "wild-type" (wt) peptide and its E4 variant are shown here to have the capacity to insert into phosphatidylcholine (POPC) large unilamellar vesicle (LUV) membranes in a strictly pH-dependent manner, penetration being marginal at pH 7.4 and significant at pH 5.0. Bilayer insertion was evident from a shift in the intrinsic Trp fluorescence of the wt and E4 peptides and from the induction of calcein leakage from POPC LUV and correlated well with the peptides' ability at pH 5.0 to penetrate into POPC monolayers at initial surface pressures higher than 30 mN/m. By contrast, the E1 peptide was found, at pH 5.0, to bind less tightly to vesicles (assessed by a physical separation method) and to cause much less leakage of POPC LUV than the wt, even under conditions where the peptides were bound to approximately the same extent. Consistent with the correlation between leakage and penetration observed for the wt peptide at pH 5 versus 7, the E1 peptide, even at low pH, showed much less lipid-vesicle-induced shift of its Trp fluorescence than wt, caused a much slower rate of leakage of vesicle contents, and did not insert into POPC monolayers at surface pressures beyond 28.5 mN/m. Circular dichroism spectroscopy measurements of peptides in POPC SUV showed that the conformations of all three peptides are sensitive to pH, but only the wt and E4 peptides became predominantly alpha-helical at acid pH. 相似文献
10.
J M Katz W G Laver D O White E M Anders 《Journal of immunology (Baltimore, Md. : 1950)》1985,134(1):616-622
The recognition of influenza virus hemagglutinin (HA) by T lymphocytes was examined by assaying the T cell proliferative response of influenza virus-primed T cells to purified HA of different influenza A subtypes or to isolated heavy (HA1) or light (HA2) polypeptide chains of the HA molecule. The proliferative response to HA was dependent on the activation of an Ly-1+2- subset of T cells and required the presence of nylon wool-adherent, radiation-resistant accessory cells. T cells from mice primed by infection with one strain of type A influenza virus cross-reacted with other purified HA not only of the same subtype as the priming virus but also of serologically distinct subtypes of influenza A (but not B) virus. The response of virus-primed T cells to the homologous HA or to HA of the same subtype was shown to involve recognition of determinants on both the HA1 and the HA2 chains. The recognition of HA of different subtype by cross-reactive T cells appeared to be directed predominantly to determinants on HA2. Because the antibody response to influenza virus HA is not cross-reactive between subtypes and is directed predominantly to determinants on HA1, the present results indicate that at least some of the determinants on HA recognized by T cells are different from those recognized by B cells and that the HA2 chain may be involved primarily in stimulation of T cell rather than B cell immunity. 相似文献
11.
John P. Welsh Yuan Lu Xiao‐Song He Harry B. Greenberg James R. Swartz 《Biotechnology and bioengineering》2012,109(12):2962-2969
In order to effectively combat pandemic influenza threats, there is a need for more rapid and robust vaccine production methods. In this article, we demonstrate E. coli‐based cell‐free protein synthesis (CFPS) as a method to rapidly produce domains from the protein hemagglutinin (HA), which is present on the surface of the influenza virus. The portion of the HA coding sequence for the “head” domain from the 2009 pandemic H1N1 strain was first optimized for E. coli expression. The protein domain was then produced in CFPS reactions and purified in soluble form first as a monomer and then as a trimer by a C‐terminal addition of the T4 bacteriophage foldon domain. Production of soluble trimeric HA head domain was enhanced by introducing stabilizing amino acid mutations to the construct in order to avoid aggregation. Trimerization was verified using size exclusion HPLC, and the stabilized HA head domain trimer was more effectively recognized by antibodies from pandemic H1N1 influenza vaccine recipients than was the monomer and also bound to sialic acids more strongly, indicating that the trimers are correctly formed and could be potentially effective as vaccines. Biotechnol. Bioeng. 2012; 109: 2962–2969. © 2012 Wiley Periodicals, Inc. 相似文献
12.
Conformation and interaction with the membrane models of the amino-terminal peptide of influenza virus hemagglutinin HA2 at fusion pH. 总被引:1,自引:0,他引:1
Conformations of a 48-mer peptide corresponding to the amino-terminal region of influenza HA2 in aqueous and membranous environments were studied. In aqueous solution the peptide was found to be oligomeric and its helicity was enhanced at higher concentrations. The conformation in phospholipid bilayer and insertion depth into the sodium dodecyl sulfate (SDS) micelle for the fusion peptide were in line with those determined for the amino-terminal 25-mer analog. The turn of residues 28-31 found in the crystal structure of hemagglutinin at neutral pH persisted in the presence of SDS at pH 5.0. Except for the turn, conformational lability of the amino portion of HA2 is suggested by comparison of the secondary structure determined herein with that obtained with the influenza fusion protein crystallized in the aqueous phase at neutral pH. The backbone amide proton exchange experiment suggested an interaction with the micellar surface for the segment carboxy-terminal to the fusion peptide domain. 相似文献
13.
Influenza virus hemagglutinin undergoes a conformational change in which a loop-to-helix "spring-loaded" conformational change forms a coiled coil that positions the fusion peptide for interaction with the target bilayer. Previous work has shown that two proline mutations designed to disrupt this change disrupt fusion but did not determine the basis for the fusion defect. In this work, we made six additional mutants with single proline substitutions in the region that undergoes the spring-loaded conformational change and two additional mutants with double proline substitutions in this region. All double mutants were fusion inactive. We analyzed one double mutant, F63P/F70P, as an example. We observed that F63P/F70P undergoes key low-pH-induced conformational changes and binds tightly to target membranes. However, limited proteolysis and electron microscopy observations showed that the mutant forms a coiled coil that is only approximately 50% the length of the wild type, suggesting that it is splayed in its N-terminal half. This work further supports the hypothesis that the spring-loaded conformational change is necessary for fusion. Our data also indicate that the spring-loaded conformational change has another role beyond presenting the fusion peptide to the target membrane. 相似文献
14.
X-ray studies show that influenza hemagglutinin (HA) forms an elongated structure connecting the influenza virus at one end to cell-surface receptors at the other. At neutral pH, the 20 N-terminal residues of HA2—referred to as the fusion peptide—are buried in a hydrophobic pocket, about 100 Å away from the receptor-binding site, and thus seem unlikely to affect HA binding to the receptor. To test this assumption, we mutated residues in the fusion peptide, heterologically expressed the mutated proteins in COS7 cells, and examined their ability to bind fluorescently labeled red blood cells (RBCs). Surprisingly, a significantly reduced binding was recorded for some of the mutants. Ample experimental data indicate that HA has at least two forms: the native structure at neutral pH (N) that is metastable and the fusogenic form (F), observed at low pH, which is stable. Thus, a simple interpretation of our data is that HA can bind to its receptors at the RBC surface in the N form much more effectively than in the F (or in any other stable) form and that the altered binding properties are due to destabilizing effects of the mutations on the N form. That is, some of the mutations involve reduction in the free energy barrier between the N and F forms. This, in turn, leads to reduction in the population of the N form, which is the only form capable of binding to the cell-surface receptors. To explore this possibility, we estimated the stability free energy difference between HA wild-type (wt) and mutants in the N form using an empirical surface tension coefficient. The calculated stability differences correlated well with the measured binding, supporting the above interpretation. Our results are examined taking into account the available experimental data on the affinity of different soluble and membrane-attached forms of HA to its receptors. 相似文献
15.
Bilayer conformation of fusion peptide of influenza virus hemagglutinin: a molecular dynamics simulation study 下载免费PDF全文
Unraveling the conformation of membrane-bound viral fusion peptides is essential for understanding how those peptides destabilize the bilayer topology of lipids that is important for virus-cell membrane fusion. Here, molecular dynamics (MD) simulations were performed to investigate the conformation of the 20 amino acids long fusion peptide of influenza hemagglutinin of strain X31 bound to a dimyristoyl phosphatidylcholine (DMPC) bilayer. The simulations revealed that the peptide adopts a kinked conformation, in agreement with the NMR structures of a related peptide in detergent micelles. The peptide is located at the amphipathic interface between the headgroups and hydrocarbon chains of the lipid by an energetically favorable arrangement: The hydrophobic side chains of the peptides are embedded into the hydrophobic region and the hydrophilic side chains are in the headgroup region. The N-terminus of the peptide is localized close to the amphipathic interface. The molecular dynamics simulations also revealed that the peptide affects the surrounding bilayer structure. The average hydrophobic thickness of the lipid phase close to the N-terminus is reduced in comparison with the average hydrophobic thickness of a pure dimyristoyl phosphatidylcholine bilayer. 相似文献
16.
HA1 and HA2 polypeptides of influenza A virus haemagglutinin (HA) were separated in purified form using electrophoresis in SDS containing polyacrylamide gels (PAGE) or chloroform-methanol extraction. The populations of HA1 polypeptides were immunogenic but considerably less so than the intact HA molecule and induced antibody which cross-reacted with influenza A and B viruses. After absorption with heterologous influenza B virus, the cross-reacting antibodies were removed and the HA1 antisera then possessed antibodies which reacted only with the cross-reactive (CR) determinants of the HA of the homologous influenza A virus and viruses of the same subtype. Neither strain-specific (SS) nor virus-neutralizing antibodies were detected in these anti-HA1 sera. HA2 polypeptides were less immunogenic and anti-HA2 antisera after absorption with influenza B virus failed to react with influenza A virus in immuno double diffusion tests and only reacted with partially denatured HA in the more sensitive single radial diffusion tests. 相似文献
17.
Onda M Nakatani K Takehara S Nishiyama M Takahashi N Hirose M 《The Journal of biological chemistry》2008,283(25):17568-17578
Serine proteinase inhibitors (serpins) are believed to fold in vivo into a metastable "stressed" state with cleavage of their P1-P1' bond resulting in reactive center loop insertion and a thermostable "relaxed" state. To understand this unique folding mechanism, we investigated the refolding processes of the P1-P1'-cleaved forms of wild type ovalbumin (cl-OVA) and the R339T mutant (cl-R339T). In the native conditions, cl-OVA is trapped as the stressed conformer, whereas cl-R339T attains the relaxed structure. Under urea denaturing conditions, these cleaved proteins completely dissociated into the heavy (Gly(1)-Ala(352)) and light (Ser(353)-Pro(385)) chains. Upon refolding, the heavy chains of both proteins formed essentially the same initial burst refolding intermediates and then reassociated with the light chain counterparts. The reassociated intermediates both refolded into the native states with indistinguishable kinetics. The two refolded proteins, however, had a notable difference in thermostability. cl-OVA refolded into the stressed form with T(m) = 68.4 degrees C, whereas cl-R339T refolded into the relaxed form with T(m) = 85.5 degrees C. To determine whether cl-R339T refolds directly to the relaxed state or through the stressed state, conformational analyses by anion-exchange chromatography and fluorescence measurements were executed. The results showed that cl-R339T refolds first to the stressed conformation and then undergoes the loop insertion. This is the first demonstration that the P1-P1'-cleaved serpin peptide capable of loop insertion refolds to the stressed conformation. This highlights that the stressed conformation of serpins is an inevitable intermediate state on the folding pathway to the relaxed structure. 相似文献
18.
Immunogenic structure of the influenza virus hemagglutinin 总被引:133,自引:0,他引:133
N Green H Alexander A Olson S Alexander T M Shinnick J G Sutcliffe R A Lerner 《Cell》1982,28(3):477-487
We chemically synthesized 20 peptides corresponding to 75% of the HA1 molecule of the influenza virus. Antibodies to the majority (18) of these peptides were capable of reacting with the hemagglutinin molecule. These 18 peptides are not confined to the known antigenic determinants of the hemagglutinin molecule, but rather are scattered throughout its three-dimensional structure. In contrast, antibody raised to intact hemagglutinin did not react with any of the 20 peptides. Taken together these results suggest that the immunogenicity of an intact protein molecule is not the sum of the immunogenicity of its pieces. 相似文献
19.
Derek Gatherer 《Indian journal of microbiology》2009,49(4):352-357
Recent advances in phylogenetic methods have produced some reassessments of the ages of the most recent common ancestor of hemagglutinin proteins in known strains of influenza A. This paper applies Bayesian phylogenetic analysis implemented in BEAST to date the nodes on the influenza A hemagglutinin tree. The most recent common ancestor (MRCA) of influenza A hemagglutinin proteins is located with 95% confidence between 517 and 1497 of the Common Era (AD), with the center of the probability distribution at 1056 AD. The implications of this revised dating for both historical and current epidemiology are discussed. Influenza A can be seen as an emerging disease of mediaeval and early modern times. 相似文献
20.
血凝素(Hemagglutinin,HA)是流感病毒的主要表面抗原之一,诱导机体产生中和抗体,介导病毒囊膜与靶细胞膜融合,从而启动病毒对宿主细胞的感染过程。HA蛋白以前体形式合成,需经宿主蛋白酶水解为HA1、HA2两个亚单位,并以二硫键连接,病毒才获得感染性。研究表明宿主蛋白酶的分布与流感病毒感染后的致病力和组织嗜性有直接关系。潜在的裂解酶及其抑制因子的发现为流感的防治提供了新的思路,成为干预治疗的新潜在靶点。就当前国内外关于流感病毒血凝素的结构与功能、裂解机制及其应用的研究进展进行综述。 相似文献