首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamine Metabolism in Experimental Brain Tumors of Rat   总被引:3,自引:0,他引:3  
Abstract: Biosynthesis and accumulation of the polyamines putrescine, spermidine, and spermine are closely associated with cellular growth processes. We examined polyamine levels and the activity of their first rate-limiting enzyme, ornithine decarboxylase (ODC), in stereotactically induced experimental gliomas of the rat brain 1 and 2 weeks after implantation. Regional ODC activity and polyamine levels were determined in the tumor and in the ipsi- and contralateral striatum, white matter, and cerebral cortex. In the tumor, both ODC activity and polyamine levels markedly increased with progressive tumor growth, as compared to those in the white matter of the opposite hemisphere. In the peritumoral brain tissue, ODC activity did not change, but there was a marked increase of putrescine and, to a lesser degree, of spermidine and spermine almost throughout the whole ipsilateral hemisphere. ODC activity, therefore, seems to be a reliable marker of neoplastic growth in the brain, which may be of use for new clinical concepts of the diagnosis and therapy of brain tumors. The more diffuse distribution of polyamines, however, may be associated with the formation and spreading of edema, which would explain some of the biological effects of tumors on distant brain tissue.  相似文献   

2.
Abstract: The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and γ-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9–12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S -Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.  相似文献   

3.
The effect of a stressful manipulation on the metabolism of gamma-aminobutyric acid (GABA) in the rat brain was studied. Application of an immobilized stress to animals induced a significant increase in the striatal and hypothalamic GABA contents without affecting those in other central structures examined. It was also found that the increase in striatal GABA level preceded that in the hypothalamus. This increase in steady-state levels of GABA in the striatum and hypothalamus disappeared at 12 h after the termination of the application of stress for 3 h, which exhibited a maximal stimulatory action on the GABA contents in both central areas. The activity of L-glutamic acid decarboxylase was found to be significantly elevated in the striatum and hypothalamus following the stress application with a concomitant decrease in the content of L-glutamic acid, which is converted to GABA by the catalytic action of the latter enzyme. The in vivo turnover of GABA in the brain was estimated by taking advantages of the postmortem accumulation of GABA following decapitation and of the selective inhibitory action of a low dose of aminooxyacetic acid on the GABA degrading system, respectively. Analysis using these two different methods revealed that the cerebral turnover of GABA in vivo was not significantly altered under stressful situations despite of the increase in its steady-state level. These results suggest that central GABA system may respond to the input of painful stimuli resulting from the application of a severe physical and psychological stressor, in addition to the well-known functional alterations in catecholamine neurons. The functional significance of these alterations in the central GABA neurons is also discussed.  相似文献   

4.
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels.  相似文献   

5.
Detection of Ornithine Decarboxylase Antizyme in Mouse Brain   总被引:5,自引:4,他引:1  
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, is known to be regulated by a macromolecular inhibitor, termed antizyme, in a number of cellular systems. The present results show that the antizyme is also a functional component of polyamine metabolism in the brain. It could be demonstrated both in normal randomly selected mice and in animals which had been subjected either to intracerebroventricular injection of saline, which is known to cause a transient activation of ornithine decarboxylase, or to 1,3-diamino-2-propanol, an antizyme-inducing agent. When compared to tissues or cell systems studied so far, the cytosol fraction from mouse brain homogenate appeared to contain an exceptionally high amount of antizyme, that was bound to some material other than active ornithine decarboxylase. This feature was seen in all the animal groups studied, being most prominent after saline injection, when the amount of dissociable antizyme exceeded 14-fold the corresponding released ornithine decarboxylase activity. In untreated animals the excess was about eightfold and after 1,3-diamino-2-propanol about fivefold.  相似文献   

6.
The effect of glucocorticoids on polyamine metabolism has been elucidated further by measuring putrescine, spermidine, and spermine levels as well as ornithine decarboxylase, S-adenosylmethionine decarboxylase, and N1-acetylspermidine transferase activities in the hippocampus, cerebellar cortex, vermis, and deep nuclei of adrenalectomized rats. At 6 h after corticosterone or dexamethasone administration, the specific activities of ornithine decarboxylase and N1-acetylspermidine transferase showed the greatest increases in all brain tissues examined, and at 12 h, S-adenosylmethionine decarboxylase activity was not increased significantly. The hippocampus and cerebellar regions displayed different responses to corticosterone and dexamethasone, corresponding to the distribution of glucocorticoid and mineralocorticoid receptors. Corticosterone and dexamethasone increased ornithine decarboxylase and N1-acetylspermidine transferase activities in a dose-dependent manner, with dexamethasone being more active than corticosterone in all tissues. However, estradiol, progesterone, testosterone, and aldosterone were only active at doses greater than 5 mg/kg. The great increases in ornithine decarboxylase and N1-acetylspermidine transferase activities were accompanied by a marked increase in putrescine level and a small decrease in spermidine level. Our data confirm that the hippocampus and cerebellum are glucocorticoid target tissues and suggest that the increase in the content of putrescine, following acute treatment with glucocorticoids, is dependent on ornithine decarboxylase as well as N1-acetylspermidine transferase induction.  相似文献   

7.
多胺是生物体内广泛存在的一类具有多种生物活性的低分子化合物,其合成的关键限速酶是鸟氨酸脱羧酶,鸟氨酸脱羧酶和多胺共同参与生物生长发育等重要生理过程。细菌鸟氨酸脱羧酶在结构上和真核生物略有不同,但是功能类似,其能通过促进多胺的产生发挥对细菌的调节作用。研究发现,细菌鸟氨酸脱羧酶也参与细菌对其他物种的作用,但对人体的作用尚不明确。因此,本文综述了国内外关于细菌鸟氨酸脱羧酶在促进细菌生长、适应环境、抗生素抗性和生物膜形成等方面的作用及相关机制,希望能对细菌鸟氨酸脱羧酶及其作用的后续研究提供一些信息与参考。  相似文献   

8.
Abstract Infecting NIH 3T3 cells with different species of mycoplasmas resulted only in a slight decrease in ornithine decarboxylase (ODC) activity and in the appearance of cadaverine in the infected cells. Similarly, the presence of mycoplasma in NIH 3T3 cells infected with a temperature-sensitive mutant of Rous Sarcoma virus did not bring about any significant changes either in the pattern of ODC activity or in putrescine levels, when transferred to the permissive temperature. This indicates that mycoplasmal contamination of cultures may not significantly change the putrescine metabolism in host cells. On the other hand, the presence of cadaverine in cultured cells may be attributed to contamination by mycoplasma.  相似文献   

9.
Abstract: Kinetic studies of [3H]γ-aminobutyric acid ([3H]GABA) after an intravenous injection were performed in normal rats and in rats with severe degree of hepatic encephalopathy due to fulminant hepatic failure induced by galactosamine. Moreover, plasma and brain GABA levels, and GABA and glutamic acid decarboxylase activity were studied in some brain areas. After intravenous injection, [3H]GABA disappeared very rapidly in the blood of normal rats, with a prompt increase of 3H metabolites. In comatose rats, a delayed disappearance of [3H]GABA.as parallelled by a lower amount of metabolites, indirectly indicating a peripheral decrease of GABA-transaminase activity. The amount of [3H]GABA in brain was lightly but constantly lower in comatose rats than in controls, indicating that the change in permeability of the blood-brain barrier in hepatic encephalopathy does not affect the [3H]GABA uptake of the brain. Furthermore, the assay of endogenous GABA in blood, whole brain, and brain areas did not show any significant difference in any of the two groups. The finding that glutamic acid decarboxylase activity in brain was reduced, together with the indirect evidence of a reduction in GABA-transaminase, may account for the steady state of GABA in hepatic encephalopathy. However, the reduction in glutamic acid decarboxylase activity is in favor of a functional derangement at the GABA-ergic nerve terminals in this pathological condition.  相似文献   

10.
Thirty minutes of insulin-induced reversible hypoglycemic coma (defined in terms of cessation of EEG activity) was produced in anesthetized rats. At the end of the hypoglycemic coma or after recovery for 3, 24, or 72 h induced by glucose infusion, the animals were reanesthetized and their brains frozen in situ. Two control groups were used: untreated controls without prior manipulations, and insulin controls, which received injections of insulin followed by glucose infusion to maintain blood glucose within the physiological range. The brains of these latter animals were frozen 3, 24, or 72 h after glucose infusion. Tissue samples from the cortex, striatum, hippocampus, and thalamus were taken to measure ornithine decarboxylase (ODC) activity, and putrescine and spermidine levels, as well as phosphocreatine (PCr), ATP, glucose, and lactate content. In addition, 20-microns thick coronal sections taken from the striatum and dorsal hippocampus were used for histological evaluation of cell damage and also stained for calcium. Insulin in the absence of hypoglycemia produced a significant increase in ODC activity and putrescine level but had no effect on the profiles of energy metabolites or spermidine. During hypoglycemic coma, brain PCr, ATP, glucose, and lactate levels were sharply reduced, as expected. Energy metabolites normalized after 3 h of recovery. In the striatum, significant secondary decreases in PCr and ATP contents and rises in glucose and lactate levels were observed after 24 h of recovery. ODC activity, and putrescine and spermidine levels were unchanged during hypoglycemic coma. After 3 h of recovery, ODC activity increased markedly throughout the brain, except in the striatum. After 24 h of recovery, ODC activity decreased and approached control values 2 days later. Putrescine levels increased significantly throughout the brain after reversible hypoglycemic coma, the highest values observed after 24 h of recovery (p less than or equal to 0.001, compared with controls). After 72 h of recovery, putrescine levels decreased, but still significantly exceeded control values. Reversible hypoglycemic coma did not produce significant changes in regional spermidine levels except in the striatum, where an approximately 30% increase was observed after 3 and 72 h of recovery (p less than or equal to 0.01 and p less than or equal to 0.05, respectively). Twenty-four hours after hypoglycemic coma, intense calcium staining was apparent in layer III of the cerebral cortex, the lateral striatum, and the crest of the dentate gyrus. After 72 h of recovery, the intense calcium staining included also cortical layer II, the septal nuclei, the subiculum, and the hippocampal CA1-subfield.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The concentration of cyclic AMP and cyclic GMP were measured in the denervated rat diaphragm at various times following unilateral phrenicectomy. Cyclic AMP concentration was raised by the second day after operation, reached a peak by the third day, followed by another increase at around 10 days. By contrast, cyclic GMP concentration was decreased within a day after denervation and remained below control levels at all subsequent times studied. Epinephrine in vitro produced a comparable increase in the concentration of cyclic AMP in both normal and denervated tissue. The concentration of adenosine appeared unchanged in the denervated diaphragm by comparison with its innervated contorl. Activity of ornithine decarboxylase was elevated in the diaphragms of rats treated with dibutyryl cyclic AMP, but this effect could also be achieved with sodium butyrate alone. Adenosylmethionine decarboxylase activity was unaffected after treatment with either compound. These observations and others discussed are taken to indicate a lack of direct relationship between cyclic AMP concentrations and the activity of the rate-limiting enzymes of polyamine biosynthesis in the rat diaphragm.  相似文献   

12.
Changes in the activity of choline kinase were measured in the cerebellum during development. Early transient increase was found in the enzyme activity just prior to and during birth. This period of increase did not coincide with the periods of transient elevation in ornithine decarboxylase and choline acetyltransferase previously observed in the developing cerebellum. The effects of the naturally occurring polyamines (putrescine, spermidine, and spermine) on choline kinase and choline acetyltransferase activities, and of phosphorylcholine (the product of the reaction catalyzed by choline kinase) on ornithine decarboxylase and choline acetyltransferase activities, were also examined. Choline acetyltransferase activity was not influenced by either polyamines or phosphorylcholine. However, choline kinase activity from 7-day-old, but not from adult, cerebellum was increased 25% in the presence of 4 mM spermine. In contrast, low spermidine concentrations (less than 2 mM) inhibited choline kinase activity selectively in 7-day-old cerebellum. Ornithine decarboxylase activity from 7-day-old cerebellum was inhibited in a concentration-dependent manner by phosphorylcholine. The present data together with other previous reports suggest that: (a) polyamines may play a role in choline utilization during development via their regulation of choline kinase activity, on the one hand, and of acetylcholinesterase activity on the other; and (b) during development, a reciprocal regulation of choline kinase and ornithine decarboxylase activities by their respective reaction products may exist, whereby choline kinase activity is regulated in a complex manner by polyamines and, in turn, ornithine decarboxylase is inhibited by phosphorylcholine.  相似文献   

13.
Abstract: Rats were injected with saline or the γ-aminobutyric acid (GABA) transaminase inhibitor γ-vinyl-GABA for 7 days and the effects on GABA content and glutamic acid decarboxylase (GAD) activity, and the protein and mRNA levels of the two forms of GAD (GAD67 and GAD65) in the cerebral cortex were studied. γ-Vinyl-GABA induced a 2.3-fold increase in GABA content, whereas total GAD activity decreased by 30%. Quantitative immunoblotting showed that the decline in GAD activity was attributable to a 75–80% decrease in GAD67 levels, whereas the levels of GAD65 remained unchanged. RNA slot-blotting with a 32P-labeled GAD67 cDNA probe demonstrated that the change in GAD67 protein content was not associated with a change in GAD67 mRNA levels. Our results suggest that GABA specifically controls the level of GAD67 protein. This effect may be mediated by a decreased translation of the GAD67 mRNA and/or a change in the stability of the GAD67 protein.  相似文献   

14.
Abstract: The distributions of glycine, γ-aminobutyric acid (GABA), glutamate decarboxylase (EC 4.1.1.15), and GABA transaminase (EC 2.6.1.19) were determined in rabbit and mudpuppy retinas. In both species, peak levels of the amino acids and the enzymes occurred in the inner plexiform layer. Glutamate decarboxylase was almost entirely confined to the inner plexiform layer. Determinations were also made of the GABA content of 107 individual putative amacrine cell somas from mudpuppy retina. About 30% of those somas were found to have high endogenous GABA levels.  相似文献   

15.
Effects of intraventricularly injected spermine on behavior and electrocortical activity and gamma-aminobutyric acid (GABA) metabolism after a single dose of 1.13 mumol/animal were studied. Decrease in locomotor activity, sedation or sleep, and electrocortical synchronization that lasted approximately 2 h were observed. In addition spermine caused a significant increase in GABA content in diencephalon and brainstem, 30 min after administration. Concomitantly a significant increase of glutamate decarboxylase (GAD) activity was observed in cerebral hemispheres, diencephalon, and brainstem. Reduction in gamma-aminobutyrate: alpha-oxoglutarate amino-transferase (GABA-T) levels occurred in the diencephalon along with a significant increase of GABA-T in the brainstem. The present results demonstrate that spermine has the capacity to affect GABA metabolism and are in favor of the suggestion that endogenous polyamines may modulate GABAergic mechanisms.  相似文献   

16.
Abstract: General anesthetic agents often affect the biochemical and physiologic changes triggered by cerebral ischemia. This study examined the regional activities of ornithine decarboxylase (ODC) in gerbils subjected to 5 min of bilateral carotid occlusion without anesthesia. At 2, 4, and 6 h of reperfusion, significant ODC activity was observed in both the cortex and the hippocampus. Pretreatment with α-difluoromethylornithine (DFMO) significantly blocked the ODC activity at 2, 4, and 6 h. Significant edema formation was found at 2, 4, and 6 h. At 2 h, edema formation was unaffected by administration of DFMO. However, DFMO treatment reduced later edema formation at 4 and 6 h. These results demonstrate that ODC activity and edema formation are delayed in gerbils after the induction of transient ischemia even with the removal of anesthetic agents and their potentially protective effects. These findings suggest that ODC activity and its induction of delayed cerebral edema are specific to cerebral ischemia and not to an anesthetic effect. DFMO treatment reduced both the ODC activity and edema formation, indicating a role for polyamines in postischemic edema formation.  相似文献   

17.
We have generated a transgenic mouse line strikingly overexpressing the human ornithine decarboxylase (ODC) gene in their brain. Brain ODC activity was increased in the transgenic animals by a factor of 70 in comparison with their nontransgenic littermates. The content of brain putrescine, the product of ODC, was greater than 60 mumol/g of tissue in the transgenic mice, whereas in the normal animals it was below the level that could be detected by an HPLC method. The concentrations of the higher polyamines (spermidine and spermine) were not significantly different from control values. 31P nuclear magnetic resonance (31P NMR) spectroscopy analyses revealed a significantly reduced (40%) free Mg2+ concentration as calculated from the chemical shift differences of the nucleoside triphosphate alpha and beta peaks in the brains of the transgenic animals. The lower free Mg2+ concentration in the brains of ODC transgenic mice was not a consequence of altered intracellular pH or changes in cellular high-energy metabolites. 1H NMR showed no differences in brain choline/N-acetylaspartate and total creatine/N-acetylaspartate ratios between the two animal groups. These ODC transgenic animals may serve as models in vivo for studies on cerebral postischemic events and on epilepsy, as polyamines are supposed to be involved in these processes.  相似文献   

18.
Abstract: Taurine, cysteinesulfinic acid decarboxylase (CSAD), glutamate, γ-aminobutyric acid (GABA), and glutamic acid decarboxylase (GAD) were measured in subcellular fractions prepared from occipital lobe of fetal and neonatal rhesus monkeys. In addition, the distribution of [35S]taurine in subcellular fractions was determined after administration to the fetus via the mother, to the neonate via administration to the mother prior to birth, and directly to the neonate at various times after birth. CSAD, glutamate, GABA, and GAD all were found to be low or unmeasurable in early fetal life and to increase during late fetal and early neonatal life to reach values found in the mother. Taurine was present in large amounts in early fetal life and decreased slowly during neonatal life, arriving at amounts found in the mother not until after 150 days of age. Significant amounts of taurine, CSAD, GABA, and GAD were associated with nerve ending components with some indication that the proportion of brain taurine found in these organelles increases during development. All subcellular pools of taurine were rapidly labeled by exogenously administered [35S]taurine. The subcellular distribution of all the components measured was compatible with the neurotransmitter or putative neuro-transmitter functions of glutamate, GABA, and taurine. The large amount of these three amino acids exceeds that required for such function. The excess of glutamate and GABA may be used as a source of energy. The function of the excess of taurine is still not clear, although circumstantial evidence favors an important role in the development and maturation of the CNS.  相似文献   

19.
Abstract: Polyamines have pronounced effects on N-methyl-D-aspartate (NMDA) receptors in vitro and may be important modulators of NMDA receptor activity in vivo. There is considerable regional heterogeneity in the effects of polyamines on [3H]MK-801 binding in rat brain sections. For example, spermidine enhances the binding of [3H]MK-801 to a much greater extent in the striatum than in the cortex. To further explore the basis for this regional heterogeneity, the effects of polyamines on [3H]MK-801 binding were measured in well-washed membranes prepared from frontal cortex and striatum. There was no difference in the concentration-response relationship for spermidine or the KD for [3H]MK-801 in the presence of 75 μM spermidine, suggesting that the regional difference seen in tissue sections is due to an endogenous factor that is either removed or inactivated during the preparation of membranes. Comparison of spermidine concentration-response curves in washed and unwashed tissue sections revealed that washing selectively enhanced the Emax value in the ventromedial caudate putamen without changing the EC50. This is consistent with the possibility that a noncompetitive polyamine antagonist is being removed from this region during washing. There was no regional variability in the effects of the putative inverse agonist 1, 10-diaminodecane, consistent with recent suggestions that this polyamine inhibits the NMDA receptor at a site distinct from the one at which polyamines act to enhance NMDA receptor function. Agents that modulate the redox state of the NMDA receptor did not eliminate the regional heterogeneity of polyamine effects. Furthermore, the stimulatory effect of glycine in these regions did not correlate with that of spermidine. These results suggest the existence of one or more endogenous factors that noncompetitively influence the effects of polyamines in a regionspecific manner.  相似文献   

20.
Abstract: Measurements of the activities of the two key enzymes in cerebral GABA metabolism—glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T)—were performed in normal rabbits and in rabbits with hepatic encephalopathy due to galactosamine-induced liver failure. Furthermore the uptake of GABA by synaptosomes was studied. Hepatic encephalopathy was associated with a marked decrease in the activity of GAB A-T. This decrease in activity was already apparent in galactosamine-treated rabbits before the onset of hepatic encephalopathy. Sera and serum ultrafiltrates of rabbits with hepatic encephalopathy but not of normal rabbits or of rabbits with uremic encephalopathy were shown to inhibit GABA-T activity in vitro . Cerebral GAD activity and synaptosomal GABA uptake in rabbits with hepatic encephalopathy and in untreated animals were not different. These later findings indicate that hepatic encephalopathy is not associated with alterations of presynaptic GABA nerve terminals in the central nervous system. The demonstration of a decrease in cortical GABA-T activity provides indirect evidence for decreased GABA turnover in the brains of rabbits with hepatic encephalopathy and thus is compatible with augmented GABA-ergic inhibitory neurotransmission contributing to the neural inhibition of hepatic encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号