首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nutrient uptake and growth of barley as affected by soil compaction   总被引:15,自引:0,他引:15  
Arvidsson  Johan 《Plant and Soil》1999,208(1):9-19
A field experiment with different levels of compaction was carried out on a mouldboard ploughed silty clay, with the objective of studying the effects on plant nutrient uptake and growth. Soil from the field was also used in laboratory studies of carbon and nitrogen mineralization, and plant uptake of water and nutrients. In the field, low as well as high bulk densities reduced biomass production and nutrient uptake of barley (Hordeum vulgare L.) compared to intermediate bulk densities, where grain yield was approximately 20% higher. In the beginning of the growing season, the concentration of phosphorus and potassium was lowest in plants grown in the loosest and in the most compacted soil, and suboptimal for plant growth. The uptake of nutrients transported by diffusion was more affected by compaction than for nutrients transported by mass flow. The reasons for lowered uptake in loose compared to moderately compacted soil could be reduced root-to-soil contact, a low diffusion coefficient for nutrients and/or reduced mass transport of water to seed and roots. Differences in plant nutrient concentrations between treatments gradually declined until harvest. Immediately after compaction there was probably oxygen deficiency in the compacted soil since the air-filled porosity was critically low, but as the soil dried out, mechanical resistance to root growth may have become a more important growth-limiting factor. In the laboratory study, severe compaction reduced carbon mineralization and uptake of water and nutrients by roots, and caused denitrification. There were only small differences between loose and moderately compacted soil in carbon mineralization, nitrogen concentration in the soil, uptake of water and nutrients and dry matter yield. The large yield increase due to recompaction in the field was not reproduced in the laboratory. Possible reasons are differences in soil temperature between the field and laboratory, in the sowing and fertilizing methods, the pretreatment of the soil and in the spatial variability of bulk density. It is possible that recompaction is needed only in the uppermost part of the soil, which is the loosest, dries out first, and is where the seed as well as the fertilizer are placed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Somma  F.  Hopmans  J.W.  Clausnitzer  V. 《Plant and Soil》1998,202(2):281-293
A three-dimensional solute transport model was developed and linked to a three-dimensional transient model for soil water flow and root growth. The simulation domain is discretized into a grid of finite elements by which the soil physical properties are spatially distributed. Solute transport modeling includes passive and active nutrient uptake by roots as well as zero- and first-order source/sink terms. Root water uptake modeling accounts for matric and osmotic potential effects on water and passive nutrient uptake. Root age effects on root water and nutrient uptake activity have been included, as well as the influence of nutrient deficiency and ion toxicity on root growth. Examples illustrate simulations with different levels of model complexity, depending on the amount of information available to the user. At the simplest level, root growth is simulated as a function of mechanical soil strength only. Application of the intermediate level with root water and nutrient uptake simulates the influence of timing and amount of NO3 application on leaching. The most comprehensive level includes simulation of root and shoot growth as influenced by soil water and nutrient status, temperature, and dynamic allocation of assimilate to root and shoot.  相似文献   

3.
Soil compaction is a widespread cause of reduced plant productivity. If the effects of soil compaction on plant growth are to be reproduced in simulation models, then the processes through which compaction reduces root elongation must be expressed mathematically and then tested against experimental data. The mathematical theory by which these processes may be represented is given in the accompanying article. In this article, the behavior of a simulation model based on this theory is tested against data for root growth and soil gas concentration recorded from soil columns of which the middle layers were compacted to different bulk densities. The model was able to reproduce the failure of the root system to penetrate the compacted middle layer within the period of the experiment when bulk density exceeded 1.55 Mg m-3. The model also reproduced decreases in O2 concentrations, and increases in CO2 concentrations, in the atmospheres of the compacted layer and of the uncompacted layer below it as bulk density of the compacted layer increased. The simulated time course of O2 and nutrient uptake and of O2 concentrations in the compacted layer at different depths is presented and its consistency with experimental findings is examined. As part of a larger ecosystem model, this model will be useful in estimating site-specific effects of soil compaction on carbon cycling in agroecosystems.  相似文献   

4.
C. Engels 《Plant and Soil》1993,150(1):129-138
The effects of low root zone temperatures (RZT) on nutrient demand for growth and the capacity for nutrient acquisition were compared in maize and wheat growing in nutrient solution. To differentiate between direct temperature effects on nutrient uptake and indirect effects via an altered ratio of shoot to root growth, the plants were grown with their shoot base including apical shoot meristem either within the root zone (low SB), i.e. at RZT (12°, 16°, or 20°C) or, above the root zone (high SB), i.e. at uniformly high air temperature (20°/16° day/night).At low SB, suboptimal RZT reduced shoot growth more than root growth in wheat, whereas the opposite was true in maize. However, in both species the shoot growth rate per unit weight of roots, which was taken as parameter for the shoot demand for mineral nutrients per unit of roots, decreased at low RZT. Accordingly, the concentrations of potassium (K) and phosphorus (P) remained constant or even increased at low RZT despite reduced uptake rates.At high SB, shoot growth at low RZT in both species was higher than at low SB, whereas root growth was not increased. At high SB, the shoot demand per unit of roots was similar for all RZT in wheat, but increased with decreasing RZT in maize. Uptake rates of K at high SB and low RZT adapted to shoot demand within four days, and were even higher in maize than in wheat. Uptake rates of P adapted more slowly to shoot demand in both species, resulting in reduced concentrations of P in the shoot, particularly in maize.In conclusion, the two species did not markedly differ in their physiological capacity for uptake of K and P at low RZT. However, maize had a lower ability than wheat to adapt morphologically to suboptimal RZT by increasing biomass allocation towards the roots. This may cause a greater susceptibility of maize to nutrient deficiency, particularly if the temperatures around the shoot base are high and uptake is limited by nutrient transport processes in the soil towards the roots.  相似文献   

5.
Erkki Aura 《Plant and Soil》1996,186(2):237-243
The assumption of uniform water flow to the root or uniform water potential at the root surface was shown by Hainsworth and Aylmore (1986, 1989) to be erroneous. The present paper demonstrates how the non-uniform uptake of water by a single root can be modeled. Differential equations are numerically solved to describe simultaneous water movement in the plant and in the soil. In the plant, boundary conditions are the water potentials at the root surface (Ψs) and in the xylem at the root base (Ψb). A set of difference equations describe the flow of water radially through the cortex to the xylem and in the xylem axially upwards to the base. For calculating the water flow in the soil and the values of Ψs, i.e. the boundary conditions for flow in the root, the finite element method (FEM) is used, the boundary conditions being the flux of water into the plant root and the zero flow across the wall, bottom and surface of a hypothetical soil cylinder surrounding the root. ei]Section editor: B E Clothier  相似文献   

6.
7.
Soil compaction and forest floor removal influence fundamental soil processes that control forest productivity and sustainability. We investigated effects of soil compaction and forest floor removal on tree growth, N uptake and N status in ponderosa pine. Factorial combinations of soil compaction (non-compacted and compacted) and forest floor removal (forest floor present and no forest floor) were applied to three different surface soil textures. For studying N uptake, four trees from every treatment were 15N labeled with 130.6 mg m–2 of 15N. Tree responses to compaction were dependent on the forest floor removal level. In loam and clay soils, non-compacted+no forest floor was beneficial to tree growth. Tree growth was depressed with compaction+no forest floor in clay soil. In sandy loam soil, compaction+no forest floor showed the best tree growth. No N deficiency was found in any soil type but a graphical method suggested correlation between N status and tree growth. In loam and clay soils, compaction+forest floor present increased N uptake. Nitrogen uptake was explained significantly by potential N mineralization in loam and clay soils. In sandy loam soil, the effects of compaction and forest floor removal were more complex, with the N uptake improved in the compaction+no forest floor treatment and reduced under compaction+forest floor present. Soil compaction may have influenced N tracer uptake because of improved unsaturated flow and root-soil contact. However, N immobilization may have restricted N uptake in compaction+forest floor present in the sandy loam soil. The study illustrates how soil properties and site preparation can potentially interact to affect N dynamics and forest productivity.  相似文献   

8.
宁南山区典型植物根系分解特征及其对土壤养分的影响   总被引:1,自引:0,他引:1  
杨轩  李娅芸  安韶山  曾全超 《生态学报》2019,39(8):2741-2751
根系分解是陆地生态系统碳和养分循环的重要地下生态过程,研究宁南山区典型植物根系分解特征及其对土壤养分的影响,能够丰富和完善陆地生态系统的物质和能量循环机制,为我国黄土高原植被恢复过程中植物与土壤之间的养分循环提供依据。连续2年研究了宁南山区3种典型植物(长芒草、铁杆蒿和百里香)根系的分解特征及其对土壤养分的影响。结果表明,长芒草、铁杆蒿和百里香根系年分解指数(K)分别0.00891、0.01128、0.01408,分解速率依次表现为百里香铁杆蒿长芒草。分解16个月后3种典型植物根系释放大量养分,其中碳的释放量在57.05—124.39 g/kg;氮的释放量在0.12—0.47 g/kg。3种典型植物根系对土壤养分的影响主要表现为:试验结束时,0—5 cm表层土壤有机碳含量提高了0.17—0.35 g/kg,5—20 cm土层土壤有机碳含量提高了0.26—0.35 g/kg。相关性分析可知,植物根系养分释放量与土壤养分含量之间存在一定的负相关关系,当土壤养分含量较低时,根系会增加养分释放量进行补充。由此可知,根系分解提高了土壤养分含量,有效的促进了养分在根系-土壤中的循环。  相似文献   

9.
The effects of decomposing peach root residues in soil on peach growth were determined in two pot experiments. In the first, peach root residues, despite their high C:N ratio and lignin content, largely decomposed under experimental conditions, leading to an immobilization of inorganic N. Shoot growth of peach seedlings was depressed by the addition of peach root residues, an effect that depended on their size and concentration: fine-textured root fragments (0.45–1.00 mm) resulted in more severe effects than medium sized ones (2–8 mm), while growth depression occurred only at concentrations higher than 0.35%. Peach root growth was depressed by root residues regardless of their size and amount. In the second experiment, where nitrogen was added to all pots to minimize the effects of immobilization of N during decomposition of root fragments, the growth of peach roots in residue-supplemented soil almost stopped. Pre-planting phosphate enrichment was very effective in stimulating growth of peach in virgin soil but did not offset the depression caused by peach root residues. It thus appears that besides mineral deficiencies, there exist alternative explantations of poor growth of peach in replant soils, including growth-inhibiting substances from decomposing root residues.  相似文献   

10.
Seed size and weight are important criteria for determining seedling vigour and stand establishment. Evolution of seed dry weight of wheat (Triticum aestivum L.) during germination and early growth was examined because poor stands are often associated with the depletion and exhaustion of seed reserves. Two laboratory experiments were conducted on filter paper and in soil at three water potentials using wheat seeds. Seed, root, and shoot dry weights were recorded at approximately one-day intervals. Coleoptile and first leaf lengths were also measured at all sampling periods. Wheat seedlings grown on filter paper in the dark grew to a length of 90 to 100 mm with 50% of the initial seed weight remaining after eight days when the experiment was terminated. In soil, wheat seedlings grew 15 mm with 25% of the initial seed weight remaining. Seed reserves were depleted more quickly when the soil was wet because seedlings grew more quickly. There were significant and similar negative relationships between seed weight and coleoptile length of wheat seedlings grown on filter paper and in soil. There was no effect of soil water potential on the relationship between seed weight and shoot length. Therefore, it was concluded that poor wheat stands are not likely to occur due to depletion of seed reserves under field conditions without mechanical obstacles.  相似文献   

11.
12.
13.
Root disease caused by Rhizoctonia solani is a common problem of spring wheat in South Australia. There are reports that nitrogen applications can reduce the incidence and severity of the disease. A glasshouse trail in pots examined the effects of disease and of applied nitrogen on wheat growth, and evaluated the utility of the basal stem nitrate concentration in diagnosing deficiency in plants with and without root disease. Plants were harvested at the mid-tillering stage. Shoot growth was increased by applied nitrogen until a maximum yield was attained, after which additional N had no effect on shoot yield. Root growth, however, responded positively only to low levels of applied N, after which it declined, and in the highest N treatment root mass was less than in the plants without applied N. Root disease caused severe reductions in plant growth, and both root and shoot mass were affected similarly. Even though growth of diseased plants responded positively to applied nitrogen the response was less than that of disease-free plants. The critical concentration of basal stem nitrate-N did not appear to be affected by root disease, and was estimated at 1200 mg kg-1, consistent with other glasshouse data. The basal stem nitrate-N concentration, either in fresh or dried tissue, appeared a better diagnostic tool of N stress than did total shoot N concentration or content, because of sharper definition of critical concentrations. Concentrations of other nutrients in shoot tissue were affected differentially by both applied nitrogen and root disease, but generally did not reach critical levels, although phosphorus and magnesium appeared deficient in very disease-stressed plants.  相似文献   

14.
The objective of the present research was to assess the effects of fertigation frequency on plant phosphorus and water uptake. Special attention was given to root measurement in order to elucidate the mechanism that relates the fertigation frequency to P uptake and plant growth. Lettuce (Lactuca sativa L., cv. Iceberg) grown in pots filled with quartz sand was chosen as a test plant. The experiment comprised six treatments, with two concentrations of P in irrigation water (0.2 mM and 1.0 mM), and three daily fertigation frequencies (one, four and ten). It was found that high irrigation frequency induced a significant increase in plant-P concentration at low solution-P concentration, whereas at high P concentration the effect of irrigation frequency was insignificant. Increasing the irrigation frequency significantly enhanced the transpiration flux so that the transpiration flux of plants under low irrigation-P level at 10 daily irrigation events was similar to that of plants under high solution-P. The increases with irrigation frequency of P concentration in lettuce organs and of P influx to the roots, at the low P level, were attributed to the elimination of the depletion zone at the root-soil interface by the supply of fresh nutrient solution, and the enhancement of P uptake. The higher P uptake resulted from higher convective flux of dissolved P from the substrate solution to the root surface owing to the higher average moisture content associated with frequent irrigation. The only significant correlation revealed by multiple stepwise regressions relating nutrient concentrations in the plant to yield was that between plant-P concentration and the yield. On the basis of a quadratic regression, 97% of the dry weight variation could be explained by differences in P uptake, indicating that the main effect of fertigation frequency was related to an improvement in P mobilization and uptake. Thus, frequent irrigations may compensate for P shortage.  相似文献   

15.
The role of roots penetrating various undisturbed soil horizons beneath loose layer in water use and shoot growth of maize was evaluated in greenhouse experiment. 18 undisturbed soil columns 20 cm in diameter and 20 cm in height were taken from the depths 30–50 cm and 50–70 cm from a Brown Lowland soil, a Pseudogley and a Brown Andosol (3 columns from each depth and soil). Initial resistance to penetration in undisturbed soil horizons varied from 2.5 to 8.9 MPa while that in the loose layer was 0.01 MPa. The undisturbed horizons had a major effect on vertical arrangement of roots. Root length density in loose layer varied from 96 to 126 km m-3 while in adjacent stronger top layers of undisturbed horizons from 1.6 to 20.0 km m-3 with higher values in upper horizons of each soil. For specific root length, the corresponding ranges were 79.4–107.7 m g-1 (on dry basis) and 38.2–63.7 m g-1, respectively. Ratios of root dry weight per unit volume of soil between loose and adjacent undisturbed layers were much lower than those of root length density indicating that roots in undisturbed horizons were produced with considerably higher partition of assimilates. Root size in undisturbed horizons relative to total roots was from 1.1 to 38.1% while water use from the horizons was from 54.1 to 74.0%. Total water use and shoot growth were positively correlated with root length in undisturbed soil horizons. There was no correlation between shoot growth and water use from the loose layers.  相似文献   

16.
秸秆及秸秆黑炭对小麦养分吸收及棕壤酶活性的影响   总被引:14,自引:0,他引:14  
冯爱青  张民  李成亮  杨越超  陈宝成 《生态学报》2015,35(15):5269-5277
通过小麦盆栽试验,研究了玉米秸秆及其秸秆黑炭施加对小麦养分吸收利用和棕壤酶活性的影响。试验设对照(CK),黑炭(B),秸秆还田(S),尿素(U),尿素+黑炭(UB)及尿素+秸秆还田(US)6个处理,各处理3次重复。结果表明:无氮肥施入下,B处理较CK和S处理籽粒产量显著提高99.4%和77.7%,小麦地上部氮、磷、钾吸收累积量分别显著提高94.1%—140.9%,55.4%—66.3%和53.1%—72.6%;有氮肥施入下,UB和US处理较U处理提高籽粒产量8.2%—8.8%,小麦地上部氮、磷、钾吸收累积量分别显著提高14.3%—27.8%,19.6%—30.9%和24.4%—40.9%。秸秆及秸秆黑炭施加处理的氮素利用率显著提高21.4%—41.7%。黑炭施加显著提高土壤中有机碳、NH+4-N、NO-3-N和速效钾含量;在施氮条件下,秸秆还田显著提高土壤中NO-3-N含量;秸秆及黑炭施加对有效磷含量无显著影响。秸秆还田显著提高了土壤脱氢酶、过氧化氢酶、脲酶和中性磷酸酶活性;施加黑炭也明显提高了土壤脱氢酶和脲酶活性,但抑制过氧化氢酶和中性磷酸酶活性。土壤脲酶活性与土壤有机碳、无机氮含量呈显著正相关,表明土壤酶可反映土壤肥力水平。  相似文献   

17.
Cui  Muyi  Caldwell  Martyn M. 《Plant and Soil》1997,191(2):291-299
To assess changes in soil nutrients, root growth and mycrorrhizal infection in response to rain events, a water pulse was applied to a very dry soil. Wetting of a dry soil in the Great Basin of the Western United States led to a striking pulse of available soil nitrate in a field plot, but available phosphate was not affected. This is the first field demonstration of this phenomenon in the Great Basin as far as we are aware. This pulse was only apparent for a few days, probably due to microbial immobilization of the nitrogen. Root ammonium uptake capacity increased within one day of the water pulse, but new root growth was not apparent until 3 days after the water pulse. Thus, to capture this ephemeral release of nitrogen, enhanced uptake capacity of existing roots was probably more important than development of new roots. Mycorrhizal infection was not affected by the water pulse treatments. However, since the water pulse only affected nitrogen availability and mycorrhizae are generally most effective in facilitating acquisition of less mobile nutrients such as phosphate, mycorrhizae likely do not play an important role in taking advantage of this opportunity provided by the pulse of water.  相似文献   

18.
This study investigated the effect of exogenous amino acids on apoplastic and symplastic uptake and root to shoot translocation of nickel (Ni) in two wheat cultivars. Seedlings of a bread (Triticum aestivum cv. Back Cross) and a durum wheat cultivar (T. durum cv. Durum) were grown in a modified Johnson nutrient solution and exposed to two levels (50 and 100 μM) of histidine, glycine, and glutamine. Application of amino acids resulted in increasing symplastic to apoplastic Ni ratio in roots of both wheat cultivars, although glutamine and glycine were more effective than histidine under our experimental conditions. The amino acid used in the present study generally increased the relative transport of Ni from the roots to shoots in both wheat cultivars. Higher amounts of Ni were translocated to wheat shoots in the presence of histidine than the other amino acids studied, which indicated that histidine was more effective in translocation of Ni from roots to shoots. Amino acids used in the present study largely increased root symplastic Ni, but shoot Ni accumulation was much lower than the total Ni accumulation in roots, indicating a large proportion of Ni was retained or immobilized in wheat roots (either in the apoplastic or symplastic space), with only a very small fraction of Ni being translocated from the root to the shoot. According to the results, glutamine and glycine were more effective than histidine in enhancing the symplastic to apoplastic Ni ratio in the roots, while more Ni was translocated from the roots to the shoots in the presence of histidine.  相似文献   

19.
本研究通过分析开花期灌水对小麦产量、植株养分分配和土壤养分分布的影响及其与根系特性的关系,为小麦充分利用水肥资源提供理论支撑。以抗旱高产品种‘洛麦28'和高光效品种‘百农207'为材料,采用2 m深土柱栽培方法,设置开花期灌水(T1)和开花期不灌水(T2)两个水分处理,测定了不同组织器官、不同土层土壤氮、磷、钾含量及根系分布特性等指标。结果表明: 小麦收获期土壤中铵态氮、速效磷和速效钾主要分布在0~80 cm土层中,硝态氮主要分布在80 cm以下土层中,开花期灌水促进小麦吸收0~60 cm土层的铵态氮、速效磷、速效钾和80 cm以下土层的硝态氮,减少了硝态氮向深层土壤的淋溶;小麦根系主要集中在0~60 cm土层中,随土壤深度的增加而减少。成熟期干物质积累量、全氮和全磷主要分配在小麦籽粒中,而全钾主要分配在茎秆中;开花期灌水显著增加了小麦百粒重,提高了小麦产量;根系形态指标与土壤硝态氮在0~40 cm土层中呈显著负相关,与土壤铵态氮在80~100 cm土层中呈极显著正相关,与土壤速效磷在0~100 cm土层中呈显著正相关。开花期灌水促进了根系在小麦生育末期对土壤养分的充分吸收,延长了养分从营养器官向生殖器官的转运功能期,使营养器官中的养分充分地转运到籽粒中去,增加小麦粒重,进而提高产量。  相似文献   

20.
Silberbush  M.  Ben-Asher  J. 《Plant and Soil》2001,233(1):59-69
Soilless plant growth systems are widely used as a means to save irrigation water and to reduce groundwater contamination. While nutrient concentrations in the growth medium are depleted due to uptake by the plants, salinity and toxic substances accumulate due to transpiration. A theoretical model is suggested, to simulate nutrient uptake by plants grown in soilless cultures with recycled solutions. The model accounts for salinity accumulation with time and plant growth, and its effects on uptake of the different nutrients by means of interaction with Na and Cl ions. The sink term occurs due to uptake by a growing root system. Influx as a function of the ion concentration is according to Michaelis–Menten active mechanisms for K+, NO3 -N, NH4 +-N, PO4-P, Ca2+, Mg2+ and SO4 2-, whose influx parameters are affected by Na and Cl, but not with time (age). Sodium influx is passive above a critical concentration. Sum of cations–anions concentrations is balanced by Cl to maintain electro-neutrality of the growth solution. Salinity (by means of Na concentration) suppresses root and leaf growth, which further effect uptake and transpiration. The model accounts for instantaneous transpiration losses, during daytime only and its effect on uptake of nutrients and plant development due to salt accumulation. The model was tested against NO3 and K+ uptake by plants associated with cumulative transpiration and with different NaCl salinity levels. Deviations from observed K+ uptake should be attributed to the salinity tolerance of the plants. In a study with data obtained from published literature, the model indicated that nutrient depletion and salinity buildup might be completely different with fully grown-up plants (that do not grow) and plants that grow with time. Depletion of different nutrients are according to their initial concentration and plant uptake rate, but also affected by their interactions with Na and Cl ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号