首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用250条10-聚寡核苷酸随机引物对具粘果山羊草(Aegilops kotschyi)、易变山羊草(Ae.variabilis)、偏凸山羊草(Ae.ventricosa)和二角山羊草(Ae.bicornis)细胞质不育系及其保持系5-1的总DNA进行了RAPD多态性分析,其中31条引物对4种不育系及其保持系总DNA均无扩增,217条引物扩增条带完全相同。有2条随机引物在2种不育系之间有特异的扩增片段,其中引物S22在偏凸山羊草细胞质雄性不育系基因组DNA中扩增出分子量约为1600bp的特异带,引物S202在粘果山羊草细胞质雄性不育系基因组DNA中扩增出约1300bp特异带。线粒体基因组DNA的RAPD分析表明,4种不育系及其保持系mtDNA存在明显的差异。证明了S22—1600为偏凸山羊草细胞质不育系及其mtDNA基因组DNA的RAPD特异片段.S202—1300可能为粘果山羊草细胞质不育系及其ctDNA基因组DNA的RAPD特异片段。  相似文献   

2.
三系杂交稻亲本随机扩增多态性DNA(RAPD)分析   总被引:26,自引:3,他引:23  
选用9个随机引物对31份杂交水稻亲本材料进行了RAPD分析, 共检测到60条多态性带。聚类分析结果表明,所有供试材料可以被明确地区分。在9个随机引物中,有8个具有较高的多态性检测能力。以这8个引物为基础,选用任两个引物即可在任一对材料中检测出多态性的频率在96.13%以上,而选用任3个引物则该频率在99.21%以上。这显示了运用RAPD鉴定稻种具有简便、灵敏、高效的优点,在鉴定杂交稻种的实践中有着良好的应用前景。 Abstract:Seven rice sterile lines,12 maintainer lines and 12 restorer lines were analyzed by RAPD with 9 primers.Altogether,118 fragments were generated,of which 60 detected polymorphisms among rice marker.Eight of nine primers can detect high polymorphism.The frequencies of polymorphism in any primers were used,the frequencies would be higher than 99.21%.The eight primers were therefore recommended as candidates for the identification of hybrid rice seeds.  相似文献   

3.
Near-isogenic lines (NILs) for the leaf rust resistance gene Lr9 were screened for polymorphisms at the molecular level. RAPD (random amplified polymorphic DNA) primers as well as RFLP (restriction fragment length polymorphism) markers were used. Out of 395 RAPD primers tested, three showed polymorphisms between NILs, i.e., an additional band was found in resistant lines. One of these polymorphic bands was cloned and sequenced. Specific primers were synthesized, and after amplification only resistant lines showed an amplified product. Thus, these primers define a sequence-tagged site that is specific for the translocated fragment carrying the Lr9 gene. A cross between a resistant NIL and the spelt (Triticum spelta) variety Oberkulmer was made, and F2 plants were analyzed for genetic linkage. All three polymorphisms detected by the PCR (polymerase chain reaction) and one RFLP marker (cMWG684) showed complete linkage to the Lr9 gene in 156 and 133 plants analyzed, respectively. A second RFLP marker (PSR546) was closely linked (8±2.4 cM) to the Lr9 gene and the other four DNA markers. As this marker maps to the distal part of the long arm of chromosome 6B of wheat, Lr9 and the other DNA markers also map to the distal region of 6BL. All three PCR markers detected the Lr9 gene in independently derived breeding lines and varieties, thus proving their general applicability in wheat breeding programs.  相似文献   

4.
Ten snap bean (Phaseolus vulgaris) genotypes were screened for polymorphism with 400 RAPD (random amplified polymorphic DNA) primers. Polymorphic RAPDs were scored and classified into three categories based on ethidium bromide staining intensity. An average of 5.19 RAPD bands were scored per primer for the 364 primers that gave scorable amplification products. An average of 2.15 polymorphic RAPDs were detected per primer. The results show that primer screening may reduce the number of RAPD reactions required for the analysis of genetic relationships among snap-bean genotypes by over 60%. Based on the analysis of the distribution of RAPD amplification, the same number of polymorphic RAPDs were amplified from different genotypes for all RAPD band intensity levels. A comparison of RAPD band amplification frequency among genotypes for the three categories of bands classified by amplification strength revealed a measurable difference in the frequencies of RAPDs classified as faint (weakly amplifying) compared to RAPD bands classified as bold (strongly amplifying) indicating a possible scoring error due to the underscoring of faint bands. Correlation analysis showed that RAPD bands amplified by the same primer are not more closely correlated then RAPD bands amplified by different primers but are more highly correlated then expected by chance. Pairwise comparisons of RAPD bands indicate that the distribution of RAPD amplification among genotypes will be a useful criterion for establishing RAPD band identity. For the average pairwise comparison of genotypes, 50% of primers tested and 15.8% of all scored RAPDs detected polymorphism. Based on RAPD data Nei's average gene diversity at a locus was 0.158 based on all scorable RAPD bands and 0.388 if only polymorphic RAPD loci were considered. RAPD-derived 1 relationships among genotypes are reported for the ten genotypes included in this study. The data presented here demonstrate that many informative, polymorphic RAPDs can be found among snap bean cultivars. These RAPDs may be useful for the unique identification of bean varieties, the organization of bean germplasm, and applications of molecular markers to bean breeding.  相似文献   

5.
DH lines derived from cabbage cvs. Kamienna G?owa, S?awa z Enkhuizen and Langendijker, representing R1 generation, were analysed by the use of RAPD markers for their diversity and uniformity. For the evaluation of genetic diversity, eight primers yielding informative bands were used. Of the total of 83 RAPD bands scored in this study, 16.9% were polymorphic between a set of 13 DH lines. The similarity of the DH lines, estimated by Jaccard's coefficient, was depicted in the UPGMA dendrogram. Fourteen generated informative RAPD bands allowed the identification of DH lines developed from each cultivar. The evaluation of the uniformity for six closely related DH lines was possible by the use of three primers which generate one or two polymorphic bands. The lack of differences among ten plants of the five investigated DH lines manifested their uniformity. One line showed intraline polymorphism with two RAPD primers. The occurrence of the differences at the molecular level among ten plants indicated that their parental R0 plant was probably obtained from somatic cells, not by androgenesis.  相似文献   

6.
Random amplified polymorphic DNA (RAPD) is based on DNA amplification by polymerase chain reaction (PCR) of random DNA segments using single arbitrary nucleotide sequences. We have adapted the assay to soybeans by using Stoffel Fragment DNA polymerase and by optimizing the reaction conditions. To increase the percentage of RAPD polymorphisms, the DNA template was digested with restriction enzymes before amplification. The combination of twenty-four primers and five DNA template treatments (Undigested, DraI, EcoRI, HindIII, and TaqI digested) revealed 94 polymorphic DNA fragments differing between soybean lines PI437654 and BSR101. Many polymorphic DNA bands were found unreliable or non-scoreable after re-screening of primers and verification of marker-allele segregation with 20 recombinant inbred lines (RILs). However, 28 RAPD markers were consistently polymorphic between the parental lines and followed Mendelian expectations. The use of DNA templates digested with DraI, EcoRI, HindIII or TaqI increased three times the number of RAPD markers compared to undigested DNA template alone. The 28 RAPD markers obtained were further screened with 72 RILs and placed on an existing RFLP map.  相似文献   

7.
Random amplified polymorphic DNA and pedigree relationships in spring barley   总被引:16,自引:0,他引:16  
Summary We investigated random amplified polymorphic DNA (RAPD) in 27 inbred barley lines with varying amounts of common ancestry and in 20 doubled-haploid (DH) lines from a biparental cross. Of 33 arbitrary 10 base primers that were tested, 19 distinguished a total of 31 polymorphisms. All polymorphisms were scored as dominant genetic markers except for 1, where Southern analysis indicated the presence of two codominant amplification products. The inheritance of 19 RAPD polymorphisms and one morphological trait was studied in the DH lines. There was no evidence for segregation distortion, but a group of four tightly linked loci was detected. The frequencies of RAPD polymorphism in pairs of inbred lines were used to compute values of genetic distance (d), which were compared to kinship coefficients (r) between the same pairs of lines. A linear relationship between r and d was evident, but low values of r gave poor predictions of d. Cluster analysis showed that groups of inbred lines based on r were similar to those based on d with some notable exceptions. RAPD markers can be used to gain information about genetic similarities or differences that are not evident from pedigree information.  相似文献   

8.
Bulked segregant analysis was employed to identify random amplified polymorphic DNA (RAPD) markers linked to the restorer gene (Rfo) used in theOgura radish cytoplasmic male sterility of rapeseed. A total of 138 arbitrary 10-mer oligonucleotide primers were screened on the DNA of three pairs of bulks, each bulk corresponding to homozygous restored and male sterile plants of three segregating populations. Six primers produced repeatable polymorphisms between paired bulks. DNA from individual plants of each bulk was then used as a template for amplification with these six primers. DNA polymorphisms generated by four of these primers were found to be completely linked to the restorer gene with the polymorphic DNA fragments being associated either with the fertility restorer allele or with the sterility maintainer allele. Pairwise cross-hybridization demonstrated that the four polymorphic DNA fragments did not share any homology. Southern hybridization of labelled RAPD fragments on digested genomic DNA from the same three pairs of bulks revealed fragments specific to either the male sterile bulks or to the restored bulks and a few fragments common to all bulks, indicating that the amplified sequences are low copy. The four RAPD fragments that were completely linked to the restorer locus have been cloned and sequenced to develop sequence characterized amplified regions (SCARs). This will facilitate the construction of restorer lines used in breeding programs and is the first step towards map-based cloning of the fertility restorer allele.  相似文献   

9.
Bulked segregant analysis was used to identify RAPD markers in oilseed rape (Brassica napus L.) that were linked to a male fertility restorer gene for Ogura cytoplasmic male sterility. After screening for polymorphisms using 960 primers, 14 RAPD markers were mapped to a 25 cM region including the restorer locus, a mapping population of 242 F2 individuals being employed. The map was used to select 11 markers that were investigated for polymorphisms between the restorer donor line and 46 recipient lines. A set of four RAPD markers, one in coupling phase with the restorer allele and three with the non-restorer allele, which were informative in all 46 combinations, were used in marker assisted selection of plants homozygous for the restorer allele. A total of 906 homozygous restored plants were found among the 4605 BC1F2 plants analysed. Phenotypic data of a subset of the classified plants was compared with the RAPD data and the expected number of recombinants was calculated from the map data. A close correspondence between the expected and observed numbers of plants with a deviating phenotype was found. Thus, use of a set of dominant RAPD markers provides a way obtaining reliable data for marker-assisted selection.  相似文献   

10.
以阿联红麻(Alian Kenaf)与福红992(Fuhong992)杂交产生的F2代作图群体为研究材料,分别应用RAPD单引物和双引物进行多态性条带扩增,并进行扩增效果的比较研究,以期为作图群体构建红麻遗传连锁图谱奠定基础。结果表明,RAPD双引物比单引物扩增出更多的多态性条带,提高了引物的利用率和多态性条带的扩增效率。  相似文献   

11.
Random-amplified-polymorphic DNA markers in sorghum   总被引:1,自引:0,他引:1  
Conditions have been identified that allow reproducible amplification of RAPD markers in sorghum. High resolution of RAPD markers was accomplished by radiolabeling PCR-amplified DNAs followed by separation on denaturing 5% polyacrylamide gels. Reaction parameters including MgCl2 concentration and temperature significantly influenced yield and the type of amplification products synthesized. Unexplained amplified DNAs increased when more than 35 cycles of PCR amplification were used. Under standard conditions, approximately 80% of the primers tested amplified DNA, and most revealed 1–5 polymorphisms between BTx 623 and IS 3620C. Primers were used to amplify RAPDs in 32 genotypes of sorghum. In addition, 8 primers detected RAPDs in a population previously used to create an RFLP map for sorghum. These RAPDs were mapped successfully using a population of 50 F2 plants.  相似文献   

12.
The RAPD (random amplified polymorphic DNA) fingerprinting method, which utilizes low stringency PCR amplification with single primers of arbitrary sequence to generate strain-specific arrays of anonymous DNA fragments, was calibrated relative to the widely used, protein-based multilocus enzyme electrophoretic (MLEE) typing method. RAPD fingerprinting was carried out on five isolates from each of 15 major groups of Escherichia coli strains that cause diarrheal disease worldwide (75 isolates in all). Each group consisted of isolates that were not distinguishable from one another by MLEE typing using 20 diagnostic enzyme markers. In our RAPD tests, three or more distinct subgroups in each MLEE group were distinguished with each of five primers, and 74 of the 75 isolates were distinguished when data obtained with five primers were combined. Thus, RAPD typing is far more sensitive than MLEE typing for discriminating among related strains of a species. Despite their different sensitivities, the same general relationships among strains were inferred from MLEE and RAPD data. Thus, our results recommend use of the RAPD method for studies of bacterial population genetic structure and evolution, as well as for epidemiology.  相似文献   

13.
Genetic diversity of indigenous Bradyrhizobium japonicum population in Croatia was studied by using different PCR-based fingerprinting methods. Characteristic DNA profiles for 20 B. japonicum field isolates and two reference strains were obtained using random primers (RAPD) and two sets of repetitive primers (REP- and ERIC-PCR). In comparison with the REP, the ERIC primer set generates fingerprints of lower complexity, but still several strain-specific bands were detected. Different B. japonicum isolates could be more efficiently distinguished by using combined results from REP- and ERIC-PCR. The most polymorphic bands were observed after amplification with four different RAPD primers. Both methods, RAPD and rep-PCR, resulted in identical grouping of the strains. Cluster analysis, irrespective of the fingerprinting method used, revealed that all the isolates could be divided into three major groups. Within the major groups, the degree of relative similarity between B. japonicum isolates was dependent upon the method used. Our results indicate that both RAPD and rep-PCR fingerprinting can effectively distinguish different B. japonicum strains. RAPD fingerprinting proved to be slightly more discriminatory than rep-PCR.  相似文献   

14.
RAPD band reproducibility and scoring error were evaluated for RAPDs generated by 50 RAPD primers among ten snap bean (Phaseolus vulgaris L.) genotypes. Genetic distances based on different sets of RAPD bands were compared to evaluate the impact of scoring error, reproducibility, and differences in relative amplification strength on the reproducibility of RAPD based genetic distance estimates. The measured RAPD data scoring error was 2%. Reproducibility, expressed as the percentage of RAPD bands scored that are also scored in replicate data, was 76%. The results indicate that the probability of a scored RAPD band being scored in replicate data is strongly dependent on the uniformity of amplification conditions between experiments, as well as the relative amplification strength of the RAPD band. Significant improvement in the reproducibility of scored bands and some reduction in scoring error was achieved by reducing differences in reaction conditions between replicates. Observed primer variability for the reproducibility of scored RAPDs may also facilitate the selection of primers, resulting in dramatic improvements in the reproducibility of RAPD data used in germplasm studies. Variance of genetic distances across replicates due to sampling error was found to be more than six times greater than that due to scoring error for a set of 192 RAPD bands. Genetic distance matrices computed from the RAPD bands scored in replicated data and RAPD bands that failed to be scored in replicated data were not significantly different. Differences in the ethidium bromide staining intensity of RAPD bands were not associated with significant differences in resulting genetic distance matrices. The assumption of sampling error as the only source of error was sufficient to account for the observed variation in genetic distance estimates across independent sets of RAPD bands.  相似文献   

15.
Summary Sequence characterized amplified regions (SCARs) were derived from eight random amplified polymorphic DNA (RAPD) markers linked to disease resistance genes in lettuce. SCARs are PCR-based markers that represent single, genetically defined loci that are identified by PCR amplification of genomic DNA with pairs of specific oligonucleotide primers; they may contain high-copy, dispersed genomic sequences within the amplified region. Amplified RAPD products were cloned and sequenced. The sequence was used to design 24-mer oligonucleotide primers for each end. All pairs of SCAR primers resulted in the amplification of single major bands the same size as the RAPD fragment cloned. Polymorphism was either retained as the presence or absence of amplification of the band or appeared as length polymorphisms that converted dominant RAPD loci into codominant SCAR markers. This study provided information on the molecular basis of RAPD markers. The amplified fragment contained no obvious repeated sequences beyond the primer sequence. Five out of eight pairs of SCAR primers amplified an alternate allele from both parents of the mapping population; therefore, the original RAPD polymorphism was likely due to mismatch at the primer sites.  相似文献   

16.
The results of the research confirming the possibility of applying various combinations of RAPD and ISSR primers in one multiplex PCR and the generation of a new type of R-ISSR products for the rye genome were presented in this work. The following was applied in the research: five rye genotypes including two inbred lines (153/79-1 and Ot1-3), hybrid F1 and two bulks (tolerant and susceptible) formed from recombinant inbred lines—RILs (F9) varying in the response to abiotic stress caused by nutrient deficiencies at the seedling stage. While evaluating the possibility of applying R-ISSR to the assessment of the rye variability, five of its genotypes were amplified separately with the RAPD and ISSR primers in each PCR reaction. These primers were combined in R-ISSR amplifications. The products of RAPD, ISSR and R-ISSR amplification were separated in 1.5% agarose gel. 32 R-ISSR combinations were examined, combining 20 and 8 selected RAPD and ISSR primers, respectively. 658 loci were amplified, including 230 RAPD, 180 ISSR and 271 R-ISSR, including 157 new loci. Over 91 loci were found, with an identical electrophoretic mobility for three methods. It was shown that R-ISSR products with electrophoretic mobility on agarose gels, identical to the co-migrating RAPD or ISSR, are not products of RAPD or ISSR, but they possess sequences of heteroamplicons—R-ISSR. The occurrence of sequences of primers used to R-ISSR was demonstrated while sequencing seven selected products of the above type. The ISSR primers with a low T m were proven to generate repeatable fingerprints in the thermal profile of the reaction specific for RAPD and combined with the RAPD primer—repeatable R-ISSR profiles. A similar range of variability as described in RAPD or ISSR was observed in the R-ISSR profiles. The correlation coefficient between genetic similarity matrices for five rye genotypes, calculated with the Mantel test, amounted to r AB.C = 0.870.  相似文献   

17.
Many inherited diseases occur in pure-bred dogs, but diagnosis at the level of DNA is impossible because the canine genome is largely unknown. Random amplification of polymorphic DNA (RAPD) provides many polymorphisms, but the reproducibility and Mendelian inheritance are not beyond doubt. An optimized polymerase chain reaction (PCR) was developed for canine DNA with respect to the annealing temperature and the concentrations of MgCl2, template DNA and primers. RAPD amplification products were in the range of 100–1500 base pairs. With six primers, 21 different reactions with different electrophoretic patterns were obtained, yielding 9–29 products per reaction. In DNA from dogs of 16 different breeds, 14% of the products were polymorphic; when only beagles were included the rate of polymorphism was 10%. All of the reaction products were completely reproducible in 16 DNA samples. Mendelian transmission was analysed in six beagle families (42 dogs). The segregation of polymorphic amplification products in 21 reactions performed on DNA from all beagles was nearly complete; in only two of the 630 reactions was there a product that could not be traced back to either of the parents. The reproducibility and Mendelian behaviour of polymorphisms generated by RAPD in dogs makes this tool very suitable for development of DNA markers of canine inherited diseases.  相似文献   

18.
Summary Random amplified polymorphic DNA analysis was used to determine the occurrence and extent of variation in rice (Oryza sativa L.) plants regenerated from anther culture. Androclonal variation in morphologically uniform progenies was detected using 40 10-mer oligonueleotide arbitrary primers. Among 27 plants from nine anther culture-derived lines, variation was detected in three plants from two lines by two primers, namely UBC 160 and UBC 209. Primer UBC 160 amplified a polymorphic band on one of the three progenies from DH-34, while UBC 209 detected polymorphisms on two out of three progenies from line DH-58. Apart from these, the amplification produets were monomorphic across all the regenerants from anther culture-derived plants. Out of 40 tested primers, no difference in the banding pattern was observed in three seed-derived plants. The significance of possible androclonal variation at the DNA level in rice doubled haploid breeding and genetic mapping is discussed.  相似文献   

19.
Three different types of molecular markers, RAPD, SSR and fluorescence-based AFLP, were evaluated and compared for their ability to identify oilseed rape cultivars. The direct comparison of RAPD, SSR and AFLP approaches in cultivar identification showed that the AFLP methodology detected polymorphisms more efficiently than either RAPD or SSR methods. For the characterisation of six oilseed rape cultivars, 60 RAPD primers were tested and only eight of them (14%) detected sufficient levels of polymorphism. Five microsatellites out of fifteen tested were polymorphic, but in all loci, except one, only two different alleles were detected. This result indicated the limited degree of polymorphism found in Brassica napus. Each of the six tested AFLP combinations detected polymorphisms, the best combination (M-CAA/E-ACT) had 26% polymorphic peaks from a total of 90 peaks and could distinguish the analysed cultivars and 4 out of 5 core lines of cultivars. The results presented show that florescence-based AFLP is, for the purposes of oilseed rape cultivar fingerprinting, a more suitable approach than either RAPD or SSR.  相似文献   

20.
Genetic diversity of indigenous Bradyrhizobium japonicum population in Croatia was studied by using different PCR-based fingerprinting methods. Characteristic DNA profiles for 20 B. japonicum field isolates and two reference strains were obtained using random primers (RAPD) and two sets of repetitive primers (REP- and ERIC-PCR). In comparison with the REP, the ERIC primer set generates fingerprints of lower complexity, but still several strain-specific bands were detected. Different B. japonicum isolates could be more efficiently distinguished by using combined results from REP- and ERIC-PCR. The most polymorphic bands were observed after amplification with four different RAPD primers. Both methods, RAPD and rep-PCR, resulted in identical grouping of the strains. Cluster analysis, irrespective of the fingerprinting method used, revealed that all the isolates could be divided into three major groups. Within the major groups, the degree of relative similarity between B. japonicum isolates was dependent upon the method used. Our results indicate that both RAPD and rep-PCR fingerprinting can effectively distinguish different B. japonicum strains. RAPD fingerprinting proved to be slightly more discriminatory than rep-PCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号