首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
H W Lee  S Kim  W K Paik 《Biochemistry》1977,16(1):78-85
Protein methylase I (S-adenosylmethionine: protein-arginine methyltransferase, EC 2.1.1.23) has been purified from calf brain approximately 120-fold with a 14% yield. The final preparation is completely free of any other protein-specific methyltransferases and endogenous substrate protein. The enzyme has an optimum pH of 7.2 and pI value of 5.1. The Km values for S-adenosyl-L-methionine, histone H4, and an ancephalitogenic basic protein are 7.6 X 10(-6), 2.5 X 10(-5), and 7.1 X 10(-5) M, respectively, and the Ki value for S-adenosyl-L-homocysteine is 2.62 X 10(-6) M. The enzyme is highly specific for the arginine residues of protein, and the end products after hydrolysis of the methylated protein are NG,NG-di(asymmetric), NG,N'G-di(symmetric), and NG-monomethylarginine. The ratio of [14C]methyl incorporation into these derivatives by enzyme preparation at varying stages of purification remains unchanged at 40:5:55, strongly indicating that a single enzyme is involved in the synthesis of the three arginine derivatives. The kinetic mechanism of the protein methylase I reaction was studied with the purified enzyme. Initial velocity patterns converging at a point on the extended axis of abscissas were obtained with either histone H4 or S-adenosyl-L-methionine as the varied substrate. Product inhibition by S-adenosyl-L-homocysteine with S-adenosyl-L-methionine as the varied substrate was competitive regardless of whether or not the enzyme was saturated with histone H4. On the other hand, when histone H4 is the variable substrate, noncompetitive inhibition was obtained with S-adenosyl-L-homocysteine under conditions where the enzyme is not saturated with the other substrate, S-adenosyl-L-methionine. These results suggest that the mechanism of the protein methylase I reaction is a Sequential Ordered Bi Bi mechanism with S-adenosyl-L-methionine as the first substrate, histone H4 as the second substrate, methylated histone H4 as the first product, and S-adenosyl-L-homocysteine as the second product released.  相似文献   

2.
Scheuermann TH  Keeler C  Hodsdon ME 《Biochemistry》2004,43(38):12198-12209
In humans, the enzyme thiopurine methyltransferase (TPMT) metabolizes 6-thiopurine (6-TP) medications, commonly used for immune suppression and for the treatment of hematopoietic malignancies. Genetic polymorphisms in the TPMT protein sequence accelerate intracellular degradation of the enzyme through an ubiquitylation and proteasomal-dependent pathway. Research has led to the hypothesis that these polymorphisms destabilize the native structure of TPMT, resulting in the formation of misfolded or partially unfolded states, which are subsequently recognized for intracellular degradation. Addition of the cosubstrate, S-adenosylmethionine (SAM), prevents degradation of the TPMT polymorphs in experimental assays, presumably by stabilizing the native structure. Using a bacterial orthologue of TPMT from Pseudomonas syringae, we have used NMR spectroscopy to describe the consequences of binding sinefungin, a SAM analogue, on the structure and dynamics of the TPMT protein backbone. NMR chemical shift mapping experiments localize sinefungin to a highly conserved site in classical methyltransferases. Distal chemical shift changes involving the presumed active site cover imply indirect conformational changes induced by sinefungin, which may play a role in substrate recognition or the catalytic mechanism. Analysis of protein backbone dynamics based on NMR relaxation reveals a combination of complementary effects. Whereas the peripheral, inserted structural elements of the TPMT topology are conformationally stabilized by the presence of sinefungin, a consistent increase in backbone mobility is observed for the central, conserved structural elements. The potential implications for the structural and dynamic effects of binding sinefungin for the catalytic mechanism of the enzyme and the stabilization of the degradation-susceptible TPMT polymorphs are discussed.  相似文献   

3.
Methylation of the five position of cytosine in DNA plays important roles in epigenetic regulation in diverse organisms including humans. The transfer of methyl groups from the cofactor S-adenosyl-L-methionine is carried out by methyltransferase enzymes. Using the paradigm bacterial methyltransferase M.HhaI we demonstrate, in a chemically unperturbed system, the first direct real-time analysis of the key mechanistic events-the flipping of the target cytosine base and its covalent activation; these changes were followed by monitoring the hyperchromicity in the DNA and the loss of the cytosine chromophore in the target nucleotide, respectively. Combined with studies of M.HhaI variants containing redesigned tryptophan fluorophores, we find that the target base flipping and the closure of the mobile catalytic loop occur simultaneously, and the rate of this concerted motion inversely correlates with the stability of the target base pair. Subsequently, the covalent activation of the target cytosine is closely followed by but is not coincident with the methyl group transfer from the bound cofactor. These findings provide new insights into the temporal mechanism of this physiologically important reaction and pave the way to in-depth studies of other base-flipping systems.  相似文献   

4.
The initial steps of carnitine biosynthesis in Neurospora crassa involve the methylation of the epsilon-amino group of lysine as follows: Lysine A leads to monomethyllysine B leads to dimethyllysine C leads to trimethyllysine. The methyl donor is S-adenosylmethionine. An enzyme, S-adenosylmethionine:epsilon-N-L-lysine methyltransferase, has been purified from N. crassa to near homogeneity as judged by column chromatography, polyacrylamide gel electrophoresis, and ultracentrifugation. This protein catalyzes all three methylation reactions. The reaction rates are: A less than B less than C. Sedimentation equilibrium and molecular filtration give a molecular weight of 22,000 for the protein. Sedimentation equilibrium analysis of the protein in 6 M guanidine hydrochloride and sodium dodecyl sulfate-polyacrylamide gel electrophoresis do not detect the possibility of subunit structure. The enzyme contains no half-cystine but does contain several acidic residues. The protein exhibits an absorption band between 400 and 420 nm which is 40 to 50 times less than the absorption seen at 280 nm and is not affected by the presence of substrates. The source of this absorption in unkown.  相似文献   

5.
Ten M.HhaI residues were replaced with alanine to probe the importance of distal protein elements to substrate/cofactor binding, methyl transfer, and product release. The substitutions, ranging from 6-20 A from the active site were evaluated by thermodynamic analysis, pre-steady and steady-state kinetics, to obtain Kd(AdoMet), Kd(DNA), kcat/Km(DNA), kcat, and kmethyltransfer values. For the wild-type M.HhaI, product release steps dominate catalytic turnover while the 4-fold faster internal microscopic constant kmethyltransfer presents an upper limit. The methyl transfer reaction has DeltaH and DeltaS values of 10.3 kcal/mol and -29.4 cal/(mol K), respectively, consistent with a compressed transition state similar to that observed in the gas phase. Although the ten mutants remained largely unperturbed in methyl transfer, long-range effects influencing substrate/cofactor binding and product release were observed. Positive enhancements were seen in Asp73Ala, which showed a 25-fold improvement in AdoMet affinity and in Val282Ala, which showed a 4-fold improvement in catalytic turnover. Based on an analysis of the positional probability within the C5-cytosine DNA methyltransferase family we propose that certain conserved distal residues may be important in mediating long-range effects.  相似文献   

6.
Treatment of rats with a methionine diet leads not only to a marked increase of S-adenosylmethionine synthetase in liver, but also to the increase of glycine, guanidoacetate and betaine-homocysteine methyltransferases. The activity of tRNA methyltransferase decreased with the increased amounts of methionine in the diets. However, the activities of phospholipids and S-adenosylmethionine-homocysteine methyltransferases did not show any significant change. When hepatocarcinogenesis induced by 2-fluorenylacetamide progresses, the activities of glycine and guanidoacetate methyltransferases in rat liver decreased, and could not be detected in tumorous area 8 months after treatment. The levels of S-adenosylmethionine in the liver also decreased to levels of one-fifth of control animals at 8 months. The uptake and metabolism of [methyl-3H]-methionine and -S-adenosylmethionine have been investigated by in vivo and isolated hepatocytes. The uptake of methionine and transfer of methyl group to phospholipid in the cells by methionine were remarkably higher than those by S-adenosylmethionine. These results indicate that phospholipids in hepatocytes accept methyl group from S-adenosylmethionine immediately, when it is synthesized from methionine, before mixing its pool in the cells.  相似文献   

7.
8.
9.
Svedruzić ZM  Reich NO 《Biochemistry》2005,44(27):9472-9485
We followed the cytosine C(5) exchange reaction with Dnmt1 to characterize its preference for different DNA substrates, its allosteric regulation, and to provide a basis for comparison with the bacterial enzymes. We determined that the methyl transfer is rate-limiting, and steps up to and including the cysteine-cytosine covalent intermediate are in rapid equilibrium. Changes in these rapid equilibrium steps account for many of the previously described features of Dnmt1 catalysis and specificity including faster reactions with premethylated DNA versus unmethylated DNA, faster reactions with DNA in which guanine is replaced with inosine [poly(dC-dG) vs poly(dI-dC)], and 10-100-fold slower catalytic rates with Dnmt1 relative to the bacterial enzyme M.HhaI. Dnmt1 interactions with the guanine within the CpG recognition site can prevent the premature release of the target base and solvent access to the active site that could lead to mutagenic deamination. Our results suggest that the beta-elimination step following methyl transfer is not mediated by free solvent. Dnmt1 shows a kinetic lag in product formation and allosteric inhibition with unmethylated DNA that is not observed with premethylated DNA. Thus, we suggest the enzyme undergoes a slow relief from allosteric inhibition upon initiation of catalysis on unmethylated DNA. Notably, this relief from allosteric inhibition is not caused by self-activation through the initial methylation reaction, as the same effect is observed during the cytosine C(5) exchange reaction in the absence of AdoMet. We describe limitations in the Michaelis-Menten kinetic analysis of Dnmt1 and suggest alternative approaches.  相似文献   

10.
To understand better the control of DNA methylation, we cloned and characterized the dim-2 gene of Neurospora crassa, the only eukaryotic gene currently known in which mutations appear to eliminate DNA methylation. The dim-2 gene is responsible for methylation in both symmetrical and asymmetrical sites. We mapped dim-2 between wc-1 and un-10 on linkage group (LG) VIIR and identified the gene by RFLP mapping and genetic complementation. Dim-2 encodes a 1454 amino acid protein including a C-terminal domain homologous to known DNA methyltransferases (MTases) and a novel N-terminal domain. Neither a deletion that removed the first 186 amino acids of the protein nor a mutation in a putative nucleotide binding site abolished function, but a single amino acid substitution in the predicted catalytic site did. Tests for repeat-induced point mutation (RIP) indicated that dim-2 does not play a role in this process, i.e. duplicated sequences are mutated in dim-2 strains, as usual, but the mutated sequences are not methylated, unlike the situation in dim-2+ strains. We conclude that dim-2 encodes an MTase that is responsible for all DNA methylation in vegetative tissues of NEUROSPORA:  相似文献   

11.
The major photoproduct in UV-irradiated Bacillus spore DNA is a unique thymine dimer called spore photoproduct (SP, 5-thyminyl-5,6-dihydrothymine). The enzyme spore photoproduct lyase (SP lyase) has been found to catalyze the repair of SP dimers to thymine monomers in a reaction that requires S-adenosylmethionine. We present here the first detailed characterization of catalytically active SP lyase, which has been anaerobically purified from overexpressing Escherichia coli. Anaerobically purified SP lyase is monomeric and is red-brown in color. The purified enzyme contains approximately 3.1 iron and 3.0 acid-labile S(2-) per protein and has a UV-visible spectrum characteristic of iron-sulfur proteins (410 nm (11.9 mM(-1) cm(-1)) and 450 nm (10.5 mM(-1) cm(-1))). The X-band EPR spectrum of the purified enzyme shows a nearly isotropic signal (g = 2.02) characteristic of a [3Fe-4S]1+ cluster; reduction of SP lyase with dithionite results in the appearance of a new EPR signal (g = 2.03, 1.93, and 1.89) with temperature dependence and g values consistent with its assignment to a [4Fe-4S]1+ cluster. The reduced purified enzyme is active in SP repair, with a specific activity of 0.33 micromol/min/mg. Only a catalytic amount of S-adenosylmethionine is required for DNA repair, and no irreversible cleavage of S-adenosylmethionine into methionine and 5'-deoxyadenosine is observed during the reaction. Label transfer from [5'-3H]S-adenosylmethionine to repaired thymine is observed, providing evidence to support a mechanism in which a 5'-deoxyadenosyl radical intermediate directly abstracts a hydrogen from SP C-6 to generate a substrate radical, and subsequent to radical-mediated beta-scission, a product thymine radical abstracts a hydrogen from 5'-deoxyadenosine to regenerate the 5'-deoxyadenosyl radical. Together, our results support a mechanism in which S-adenosylmethionine acts as a catalytic cofactor, not a substrate, in the DNA repair reaction.  相似文献   

12.
It was found that nonenzymatic DNA methylation proceeds in water solution in the presence of S-adenosylmethionine (AdoMet). The main reaction products are thymine and 5-methylcytosine residues. It was shown that labelled thymine residues are formed also upon DNA incubation in the presence of [methyl-14C]methionine as well as [methyl-14C]cobalamine. Only cytosine reacts with AdoMet resulting in thymine production. AdoMet may be a potential mutagen that induces GC----AT transitions during DNA replication in the cell.  相似文献   

13.
14.
Dnmt2 is the most strongly conserved cytosine DNA methyltransferase in eukaryotes. It has been found in all organisms possessing methyltransferases of the Dnmt1 and Dnmt3 families, whereas in many others Dnmt2 is the sole cytosine DNA methyltransferase. The Dnmt2 molecule contains all conserved motifs of cytosine DNA methyltransferases. It forms 3D complexes with DNA very similar to those of bacterial DNA methyltransferases and performs cytosine methylation by a catalytic mechanism common to all cytosine DNA methyltransferases. Catalytic activity of the purified Dnmt2 with DNA substrates is very low and could hardly be detected in direct biochemical assays. Dnmt2 is the sole cytosine DNA methyltransferase in Drosophila and other dipteran insects. Its overexpression as a transgene leads to DNA hypermethylation in all sequence contexts and to an extended life span. On the contrary, a null-mutation of the Dnmt2 gene leads to a diminished life span, though no evident anomalies in development are observed. Dnmt2 is also the sole cytosine DNA methyltransferase in several protists. Similar to Drosophila these protists have a very low level of DNA methylation. Some limited genome compartments, such as transposable sequences, are probably the methylation targets in these organisms. Dnmt2 does not participate in genome methylation in mammals, but seems to be an RNA methyltransferase modifying the 38th cytosine residue in anticodon loop of certain tRNAs. This modification enhances stability of tRNAs, especially in stressful conditions. Dnmt2 is the only enzyme known to perform RNA methylation by a catalytic mechanism characteristic of DNA methyltransferases. The Dnmt2 activity has been shown in mice to be necessary for paramutation establishment, though the precise mechanisms of its participation in this form of epigenetic heredity are unknown. It seems likely, that either of the two Dnmt2 activities could become a predominant one during the evolution of different species. The high level of the Dnmt2 evolutionary conservation proves its activity to have a significant adaptive value in natural environment.  相似文献   

15.
Affinity modification of EcoRII DNA methyltransferase (M x EcoRII) by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine (Crib*) or 1-(beta-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M x EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M x EcoRII region. Our results support the theoretically predicted DNA binding region of M x EcoRII.  相似文献   

16.
The chlorella virus PBCV-1 contains an open reading frame, named P17-ORF4, which differs by eight amino acids from a DNA cytosine methyltransferase, M.CviJI, encoded by a different chlorella virus IL-3A. Whereas IL-3A expresses M.CviJI, which methylates the central cytosine in (A/G)GC(T/C/G) sequences, P17-ORF4 is non-functional. Gene fusions between P17-ORF4 and M.CviJI and site-directed point mutations revealed that changing Gln188 to Lys188 abolishes M.CviJI methyltransferase activity. Conversely, changing Lys188 in P17-ORF4 to Gln188 results in M.CviJI activity. The other altered seven amino acids do not appear to affect M.CviJI activity.  相似文献   

17.
A plant cytosine methyltransferase cDNA was isolated using degenerate oligonucleotides, based on homology between prokaryote and mouse methyltransferases, and PCR to amplify a short fragment of a methyltransferase gene. A fragment of the predicted size was amplified from genomic DNA from Arabidopsis thaliana. Overlapping cDNA clones, some with homology to the PCR amplified fragment, were identified and sequenced. The assembled nucleic acid sequence is 4720 bp and encodes a protein of 1534 amino acids which has significant homology to prokaryote and mammalian cytosine methyltransferases. Like mammalian methylases, this enzyme has a C terminal methyltransferase domain linked to a second larger domain. The Arabidopsis methylase has eight of the ten conserved sequence motifs found in prokaryote cytosine-5 methyltransferases and shows 50% homology to the murine enzyme in the methyltransferase domain. The amino terminal domain is only 24% homologous to the murine enzyme and lacks the zinc binding region that has been found in methyltransferases from both mouse and man. In contrast to mouse where a single methyltransferase gene has been identified, a small multigene family with homology to the region amplified in PCR has been identified in Arabidopsis thaliana.  相似文献   

18.
High frequency mutagenesis by a DNA methyltransferase.   总被引:26,自引:0,他引:26  
J C Shen  W M Rideout  P A Jones 《Cell》1992,71(7):1073-1080
HpaII methylase (M. HpaII), an example of a DNA (cytosine-5)-methyltransferase, was found to induce directly a high frequency of C-->U transition mutations in double-stranded DNA. A mutant pSV2-neo plasmid, constructed with an inactivating T-->C transition mutation creating a CCGG site, was incubated with M. HpaII in the absence of S-adenosylmethionine (SAM). This caused an approximately 10(4)-fold increase in the rate of reversion when the mutant neo plasmid was transformed into bacteria lacking uracil-DNA glycosylase. The mutation frequency was very sensitive to SAM concentration and was reduced to background when the concentration of the methyl donor exceeded 300 nM. The data support current models for the formation of a covalent complex between the methyltransferase and cytosine. They also suggest that the occurrence of mutational hot spots at CpG sites may not always be due to spontaneous deamination of 5-methylcytosine, but might also be initiated by enzymatic deamination of cytosine and proceed through a C-->U-->T pathway.  相似文献   

19.
Using the simplest molecular models at the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of the theory it has been shown for the first time that in addition to traditional incorporational errors caused by facilitated (compared with the canonical DNA bases cytosine (Cyt)) tautomerization of 6-(2-deoxy-beta-D-ribofuranosyl)-3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one (DCyt), this mutagen causes the replication errors, increasing one million times the population of mispair Gua.DCyt* (asterisk marked mutagenic tautomer) as compared with mispair Gua.Cyt*. It is also proved that DCyt in addition to traditional incorporational errors also induces similar errors by an additional mechanism - due to a facilitated tautomerization of the wobble base pair Ade.DCyt (compared to the same pair Ade.Cyt) to a mispair Ade.DCyt* which is quasirisomorphic Watson-Crick base pair. Moreover, the obtained results allowed interpreting non-inconsistently the existing experimental NMR data.  相似文献   

20.
S-Adenosylmethionine (SAM) has been used to directly cross-link a polysaccharide specific methyltransferase isolated from Rhizobium meliloti HA. This peculiar enzyme transfers a methyl group to the 2-O-galacturonosyl residue of a teichuronic type polysaccharide and was very unstable. The apparent Km for SAM was 0.46 mM. The Hill coefficient, n, was 1. The enzyme had an optimum pH of 8.2 and requires Mn2+ at concentration of 2 mM. The enzyme was inactivated by saline concentrations of 120 mM or greater and was eluted from Superose columns with an apparent molecular weight of 28 kDa. The isoelectric point was close to 7.0. To elucidate the relationship between chemical structure and catalytic function, (3H)SAM was cross-linked to the enzyme and the enzymatic activity was assayed in presence and in absence of commercial substrate analogs. Cross-linking was performed by direct irradiation of enzyme and (3H)SAM. The uptake of radioactivity was linear up to about 20 min and then reached a plateau. This irreversible junction is specific, as shown by a number of different criteria. Several competitive inhibitors were able to affect this photoactivated cross-linkage. As the concentration of inhibitors increased, both, the level of photolabeling and enzyme activity always decreased. The SAM-enzyme adduct was shown to be a single protein band by SDS polyacrylamide gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号