首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environments of the binding subsites in Asp 101-modified lysozyme, in which glucosamine or ethanolamine is covalently bound to the carboxyl group of Asp 101, were investigated by chemical modification and nuclear magnetic resonance spectroscopy. Trp 62 in each of the native and the modified lysozymes was nitrophenylsulfenylated. The yield of the nitrophenylsulfenylated derivative from the lysozyme modified with glucosamine at Asp 101 (GlcN-lysozyme) was considerably lower than those from native lysozyme and from the lysozyme modified with ethanolamine at Asp 101 (EtN-lysozyme). These results suggest that Trp 62 in GlcN-lysozyme is less susceptible to nitrophenylsulfenylation. Kinetic analyses of the [Trp 62 and Asp 101]-doubly modified lysozymes indicated that the nitrophenylsulfenylation of Trp 62 in the native lysozyme, EtN-lysozyme, or GlcN-lysozyme decreased the sugar residue affinity at subsite C while increasing the binding free energy change by 2.7 kcal/mol, 1.5 kcal/mol, or 0.1 kcal/mol, respectively. Although the profile of tryptophan indole NH resonances in the 1H-NMR spectrum for EtN-lysozyme was not different from that for the native lysozyme, the indole NH resonance of Trp 62 in GlcN-lysozyme was apparently perturbed in comparison with that of native lysozyme. These results suggest that the environment of subsite C in GlcN-lysozyme is considerably different from those in native lysozyme and EtN-lysozyme. The glucosamine residue attached to Asp 101 may contact the sugar residue binding site of the lysozyme, affecting the environment of subsite C.  相似文献   

2.
The interactions of the substrate analogs beta-methyl-GlcNAc, (GlcNAc)2, and (GlcNAc)3 with hen egg-white lysozyme [EC 3.2.1.17] in which an ester linkage had been formed between Glu 35 and Trp 108 (108 ester lysozyme), were studied by the circular dichroic and fluorescence techniques, and were compared with those for intact lysozyme. The binding constants of beta-methyl-GlcNAc and (GlcNAc)2 to 108 ester lysozyme were essentially the same as those for intact lysozyme in the pH range of 1 to 5. Above pH 5, the binding constants of these saccharides to 108 ester lysozyme did not change with pH, while the binding constants to intact lysozyme decreased. This indicates that Glu 35 (pK 6.0 in intact lysozyme) participates in the binding of these saccharides. The extent and direction of the pK shifts of Asp 52 (pK 3.5), Asp 48 (pK 4.4), and Asp 66 (pK 1.3) observed when beta-methyl-GlcNAc is bound to 108 ester lysozyme were the same as those for intact lysozyme. The participation of Asp 101 and Asp 66 in the binding of (GlcNAc)2 to 108 ester lysozyme was also the same as that for intact lysozyme. These findings indicate that the conformations of subsites B and C are not changed by the formation of the ester linkage. On the other hand, the binding constants of (GlcNAc)3 to 108 ester lysozyme were higher than those for intact lysozyme at all pH values studied. This result is interpreted in terms of an increase in the affinity for a GlcNAc residue of subsite D, which is situated near the esterified Glu 35.  相似文献   

3.
The interactions of the substrate analogues, GlcNAc, beta-methyl GlcNAc, (GlcNAc)2, and (GlcNAc)3, with turkey egg-white lysozyme [ED 3.2.1.17], in which the Asp 101 of hen lysozyme is replaced by Gly, were studied at various pH values by measuring changes in the circular dichroic (CD) band at 295 nm. Results were compared with those for hen egg-white lysozyme. The modes of binding of these substrate analogues to turkey lysozyme were very similar to those hen lysozyme except for the participation of Asp 101 in hen lysozyme. The ionization constants of the catalytic carboxyls, Glu 35 and Asp 52, in the turkey lysozyme-(GlcNAc)3 complex were determined by measuring the pH dependence of the CD band at 304 nm, which originates from Trp 108 near the catalytic carboxyls. The ionization behavior of the catalytic carboxyls of turkey lysozyme in the presence and absence of (GlcNAc)3 was essentially the same as that for hen lysozyme. The pH dependence of the binding constant of (GlcNAc)3 to hen lysozyme was compared with that to turkey lysozyme between pH 2 and 8. The pH dependence of the binding constant for (GlcNAc)3 to turkey lysozyme could be interpreted entirely in terms of perturbation of catalytic carboxyls. In the case of hen lysozyme, it was interpreted in terms of perturbation of the catalytic carboxyls and Asp 101 in the substrate-binding site. The pK values of Asp 101 in hen lysozyme and the hen lysozyme-(GLcNAc)3 complex were 4.5 and 3.4, respectively. The binding constants of (GlcNAc)3 to lysozyme molecules with different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated. The binding constant of lysozyme, in which Asp 52 and Glu 35 are deprotonated, to (GlcNAc)3 was the smallest. The other three species had similar binding constant to (GlcNAc)3.  相似文献   

4.
The structure of lysozyme from guinea hen egg white (GEWL), which differs from hen egg white lysozyme (HEWL) by ten amino acid substitutions, was investigated by nuclear magnetic resonance (NMR) spectroscopy. GEWL and HEWL were very similar to each other in their tertiary structure as judged from the profile of 1H-NMR spectra, pH titration, and an N-acetylglucosamine trisaccharide [(GlcNAc)3 binding experiment. However, we have noticed several characteristics which distinguish GEWL from HEWL. The signal of Trp 108 indole N1H of GEWL was shifted upfield by about 0.3 ppm when compared with that of HEWL, and its hydrogen exchange was faster than that of HEWL. The pKa values of Glu 35 estimated from the pH titration curve of Trp 108 indole N1H were different between GEWL and HEWL. From a careful examination of spectral changes caused by (GlcNAc)3 binding, the changes in the chemical shift values of Trp 28 C5H and Asn 59 alpha CH of GEWL were found to be slightly larger than those of HEWL. Ile 55 of HEWL is replaced by valine in GEWL. Such a replacement may affect the neighboring hydrogen bonding between the main chain C = O of Leu 56 and Trp 108 indole N1H, resulting in a change in the microenvironment of the substrate-binding site near Trp 108.  相似文献   

5.
The indole C-2(delta 1) carbon of Trp 62 in hen egg-white lysozyme was selectively labeled with 13C through a series of reactions involving N'-formylkynurenine 62-lysozyme with K13CN, NaBH4-reduction, and acid-catalyzed dehydration. [delta 1-13C]Trp 62-lysozyme in which Trp 62 is labeled with 90% 13C has the same chemical and enzymatic properties as the native protein. The reverted lysozyme gave a single 13C-NMR signal at 125 ppm. pH-titration of the 13C signal indicated a transition at pH 3.9 for the free enzyme. In the presence of (GlcNAc)3, the resonance signals were shifted 0.5-1 ppm upfield, and the transitions in the titration curve were observed at pH 3.9 and 6.5. Asp 52 and Glu 35 were assigned to the groups with pKas of 3.9 and 6.5, respectively. In [2-13C]AHT 62-lysozyme, which has 3-(2-amino-3-hydroxy-3H-[2-13C]indol-3-yl)alanine (AHT) at position 62, AHT 62 behaved quite differently from Trp 62 on pH-titration of the 13C-label. These results suggest that a conformational change around Trp 62 is induced upon ionization of the catalytic residue and that the structural flexibility of the side chain of this aromatic residue in the substrate binding site is closely related to the function of lysozyme.  相似文献   

6.
We prepared the lysozyme derivative in which the beta-carboxyl group of Asp101 was modified with alpha-O-methyl N-glycylglucosaminide as an amide by means of the carbodimide reaction (alpha-MGG lysozyme). Since Asp101 residue is located at the edge of the active site cleft, a 1H-NMR study was carried out for this derivative in order to investigate the interaction between the introduced substituent and the active site cleft. It was confirmed that the alpha-MGG moiety sat in the active site cleft in alpha-MGG lysozyme from the reduction of line broadening of the NH-proton of Trp63 located in the active site cleft, the remarkable chemical shift change of the methyl group of the alpha-MGG moiety upon adding a trimer of N-acetyl-D-glucosamine [(NAG)3], and the NOE between the C6-proton resonance of Trp63 and the methyl resonance of the alpha-MGG moiety. Furthermore, alpha-MGG lysozyme had increased thermal stability compared with native lysozyme. Therefore, it was concluded that the alpha-MGG moiety covalently attached to Asp101 interacted with the active site cleft to increase the thermal stability of lysozyme.  相似文献   

7.
Phage lysozyme has catalytic activity similar to that of hen egg white lysozyme, but the amino acid sequences of the two enzymes are completely different.The binding to phage lysozyme of several saccharides including N-acetylglucosamine (GlcNAc), N-acetylmuramic acid (MurNAc) and (GlcNAc)3 have been determined crystallographically and shown to occupy the pronounced active site cleft. GlcNAc binds at a single location analogous to the C site of hen egg white lysozyme. MurNAc binds at the same site. (GlcNAc)3 clearly occupies sites B and C, but the binding in site A is ill-defined.Model building suggests that, with the enzyme in the conformation seen in the crystal structure, a saccharide in the normal chair configuration cannot be placed in site D without incurring unacceptable steric interference between sugar and protein. However, as with hen egg white lysozyme, the bad contacts can be avoided by assuming the saccharide to be in the sofa conformation. Also Asp20 in T4 lysozyme is located 3 Å from carbon C(1) of saccharide D, and is in a position to stabilize the developing positive charge on a carbonium ion intermediate. Prior genetic evidence had indicated that Asp20 is critically important for catalysis. This suggests that in phage lysozyme catalysis is promoted by a combination of steric and electronic effects, acting in concert, The enzyme shape favors the binding in site D of a saccharide with the geometry of the transition state, while Asp20 stabilizes the positive charge on the oxocarbonium ion of this intermediate. Tn phage lysozyme, the identity of the proton donor is uncertain. In contrast to hen egg white lysozyme, where Glu35 is 3 Å from the glycosidic DOE bond, and is in a non-polar environment, phage lysozyme has an ion pair, Glull … Arg145, 5 Å away from the glycosidic oxygen. Possibly Glull undergoes a conformational adjustment in the presence of bound substrate, and acts as the proton donor. Alternatively, the proton might come from a bound water molecule.  相似文献   

8.
Despite the low similarity between their amino acid sequences, the core structures of the fold between chicken-type and goose-type lysozymes are conserved. However, their enzymatic activities are quite different. Both of them exhibit hydrolytic activities, but the goose-type lysozyme does not exhibit transglycosylation activity. The chicken-type lysozyme has a retaining-type reaction mechanism, while the reaction mechanism of the goose-type lysozyme has not been clarified. To clarify the latter mechanism, goose egg-white lysozyme (GEL)-N-acetyl-D-glucosamine (GlcNAc)6 complexes were modelled and compared with hen egg-white lysozyme (HEL)-(GlcNAc)6 complexes. By systematic conformational search, 48 GEL-(GlcNAc)6 complexes were modelled. The right and left side, and the amino acid residues in subsites E-G were identified in GEL. The GlcNAc residue D could bind towards the right side without distortion and there was enough room for a water molecule to attack the C1 carbon of GlcNAc residue D from alpha-side in the right side and not for acceptor molecule. The result of molecular dynamics simulation suggests that GEL would be an inverting enzyme, and Asp97 would act as a second carboxylate and that the narrow space of the binding cleft at subsites E-G in GEL may prohibit the sugar chain to bind alternative site that might be essential for transglycosylation.  相似文献   

9.
The crystal structure of the catalytic domain of bovine beta1,4-galactosyltransferase (Gal-T1) co-crystallized with UDP-Gal and MnCl(2) has been solved at 2.8 A resolution. The structure not only identifies galactose, the donor sugar binding site in Gal-T1, but also reveals an oligosaccharide acceptor binding site. The galactose moiety of UDP-Gal is found deep inside the catalytic pocket, interacting with Asp252, Gly292, Gly315, Glu317 and Asp318 residues. Compared to the native crystal structure reported earlier, the present UDP-Gal bound structure exhibits a large conformational change in residues 345-365 and a change in the side-chain orientation of Trp314. Thus, the binding of UDP-Gal induces a conformational change in Gal-T1, which not only creates the acceptor binding pocket for N-acetylglucosamine (GlcNAc) but also establishes the binding site for an extended sugar acceptor. The presence of a binding site that accommodates an extended sugar offers an explanation for the observation that an oligosaccharide with GlcNAc at the non-reducing end serves as a better acceptor than the monosaccharide, GlcNAc. Modeling studies using oligosaccharide acceptors indicate that a pentasaccharide, such as N-glycans with GlcNAc at their non-reducing ends, fits the site best. A sequence comparison of the human Gal-T family members indicates that although the binding site for the GlcNAc residue is highly conserved, the site that binds the extended sugar exhibits large variations. This is an indication that different Gal-T family members prefer different types of glycan acceptors with GlcNAc at their non-reducing ends.  相似文献   

10.
A goose-type lysozyme from ostrich egg white (OEL) was produced by Escherichia coli expression system, and the role of His101 of OEL in the enzymatic reaction was investigated by NMR spectroscopy, thermal unfolding, and theoretical modeling of the enzymatic hydrolysis of hexa-N-acetylchitohexaose, (GlcNAc)6. Although the binding of tri-N-acetylchitotriose, (GlcNAc)3, to OEL perturbed several backbone resonances in the 1H–15N HSQC spectrum, the chemical shift of the backbone resonance of His101 was not significantly affected. However, apparent pKa values of His101 and Lys102 determined from the pH titration curves of the backbone chemical shifts were markedly shifted by (GlcNAc)3 binding. Thermal unfolding experiments and modeling study of (GlcNAc)6 hydrolysis using a His101-mutated OEL (H101A-OEL) revealed that the His101 mutation affected not only sugar residue affinities at subsites ?3 and ?2 but also the rate constant for bond cleavage. His101 appears to play multiple roles in the substrate binding and the catalytic reaction.  相似文献   

11.
The interaction of N-acetyl-chitotriose ((GlcNAc)3) with human lysozyme [EC 3.2.1.17] was studied at various pH values by measuring changes in the circular dichroic (CD) band at 294 or 255 nm and the data were compared with the results for hen and turkey lysozymes reported previously (Kuramitsu et al. (1974) J. Biochem.76, 671-683; Kuramitsu et al. (1975) J. Biochem. 77, 291-301). The pH dependence of the binding constant of (GlcNAc)3 to human lysozyme was different from those for hen and turkey lysozymes. The catalytic carboxyls of human lysozyme, Asp 52 and Glu 35, were not perturbed on binding of (GlcNAc)3. This is consistent with the previous findings that the macroscopic pK values of Asp 52 and Glu 35 of human lysozyme are 3.4 and 6.8 at 0.1 ionic strength and 25 degrees and were unchanged on complexing with (GlcNAc)3. An ionizable group with pK 4.5, which participates in the binding of (GlcNAc)3 to hen lysozyme and was assigned as Asp 101, did not participate in the binding of the saccharide to human lysozyme. Between pH 9 and 11, the binding constants of (GlcNAc)3 to hen lysozyme remained unchanged, whereas perturbation of an ionizable group with pK 10.5 to 10.0 was observed for human lysozyme. This group may be Tyr 62 in the active-site cleft. The binding constants of (GlcNAc)3 to human lysozyme molecules having different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated using the binding constants obtained in the present experiments and the microscopic ionization constants of the catalytic carboxyls obtained previously. All four species of human lysozyme had similar binding constants to (GlcNAc)3. This result is different from those for hen and turkey lysozymes.  相似文献   

12.
To understand better the role of subsites E and F in lysozyme-catalyzed reactions, mutant enzymes, in which Arg114, located on the right side of subsites E and F in hen egg-white lysozyme (HEL), was replaced with Lys, His, or Ala, were prepared. Replacement of Arg114 with His or Ala decreased hydrolytic activity toward an artificial substrate, glycol chitin, while replacement with Lys had little effect. Kinetic analysis with the substrate N-acetylglucosamine pentamer, (GlcNAc)(5), revealed that the replacement for the Arg residue reduced the binding free energies of E-F sites and the rate constant of transglycosylation. The rate constant of transglycosylation for R114A was about half of that for the wild-type enzyme. (1)H-NMR analysis of R114H and R114A indicated that the structural changes induced by the mutations were not restricted to the region surrounding Arg114, but rather extended to the aromatic side chains of Phe34 and Trp123, of which the signals are connected with each other through nuclear Overhauser effect (NOE) in the wild-type. We speculate that such a conformational change causes differences in substrate and acceptor binding at subsites E and F, lowering the efficiency of glycosyl transfer reaction of lysozyme.  相似文献   

13.
The lysozyme-catalyzed reaction of chitooligosaccharide was carried out in a continuous flow system in which the solution of substrate, chitooligosaccharide [(GlcNAc)n], flowed into the lysozyme solution in an ultrafiltration apparatus and the products were filtered off. The filtrate was continuously collected in test tubes with the aid of a fraction collector. The product distribution in each fraction was analyzed by high performance gel filtration. Using (GlcNAc)5 as the substrate, the concentrations of products, (GlcNAc)1----4, increased gradually and came to the steady state when the volume of the outflow amounted to sixfold of the inside volume. Before reaching the steady state, the product distribution was quite different from that observed in the closed reaction system, in which the reaction species are not exchangeable through the boundary of the system. The outflows of (GlcNAc)3-5 were delayed in comparison with those of GlcNAc and (GlcNAc)2. The delay period increased with the decrease in substrate concentration, and was shortened by using the [Asp 101 or Trp 62]-modified lysozyme instead of the native lysozyme. These results suggest that the delay in the (GlcNAc)3-5 outflows is caused by the nonproductive binding of the oligosaccharide to the lysozyme molecule. The profile of the flow reaction yields information not only on the catalytic efficiency but also on the substrate binding efficiency of the lysozyme.  相似文献   

14.
A lysozyme derivative in which two domains were cross-linked intramolecularly was newly prepared by means of a two-step reaction. First, the beta-carboxyl group of Asp101 in lysozyme was selectively modified with 2-(2-pyridyldithio)ethylamine in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride. After reduction of the pyridyldithio moiety of Asp101 modified lysozyme at pH 4.5 with dithiothreitol, the derivative was allowed to cross-link intramolecularly by reaction with 1,3-dichloroacetone at pH 7. Intramolecularly cross-linked lysozyme thus formed was purified by gel chromatography followed by ion-exchange chromatography. Based on the results of 1H-NMR and peptide analyses, it was concluded that Asp101 was cross-linked to Trp62 with a -CH2COCH2SCH2CH2NH-bridge in this derivative. The derivative showed minor but distinct activity against Micrococcus lysodeikticus and glycol chitin. Its melting temperature for thermal denaturation was higher by 7.3 degrees than that of native lysozyme at pH 3.  相似文献   

15.
The binding constants of N-acetylglucosamine (G1cNAc) and its methyl alpha- and beta- glycosides to hen and turkey egg-white lysozymes [EC 3.2.1.17], in the latter of which Asp 101 is replaced by Gly, were determined at various pH values by measuring changes in the circular dichroic (DC) band at 295 nm. The binding of beta-methyl-G1cNAc to turkey and hen lysozymes perturbed the pK value of Glu 35 from 6.0 to 6.5, the pK value of Asp 52 from 3.5 to 3.9, and the pK value of Asp 66 from 1.3 to 0.7. In addition, perturbation of the pK value of Asp 101 from 4.4 to 4.0 was observed in the binding of this saccharide to hen lysozyme. The binding of alpha-methyl-GlcNAc to hen and turkey lysozymes perturbed the pK value of Glu 35 to the alkaline side by about 0.5 pH unit, the pK value of Asp 66 to the acidic side by about 0.5 pH unit, and the pK value (4.4) of an ionizable group to the acidic side by about 0.6 pH unit. The last ionizable group was tentatively assigned to Asp 48. The pK value of Asp 52 was not perturbed by the binding of this saccharide. The pH dependence curves for the binding of GlcNAc to hen and turkey lysozymes were very similar and it was suggested that Asp 48, in addition to Asp 66, Asp 52, and Glu 35, is perturbed by the binding of GlcNAc.  相似文献   

16.
The amino acid sequence of satyr tragopan lysozyme and its activity was analyzed. Carboxymethylated lysozyme was digested with trypsin and the resulting peptides were sequenced. The established amino acid sequence had three amino acid substitutions at positions 103 (Asn to Ser), 106 (Ser to Asn), and 121 (His to Gln) comparing with Temminck's tragopan lysozyme and five amino acid substitutions at positions 3 (Phe to Tyr), 15 (His to Leu), 41 (Gln to His), 101 (Asp to Gly) and 103 (Asn to Ser) with chicken lysozyme. The time course analysis using N-acetylglucosamine pentamer as a substrate showed a decrease of binding free energy change, 1.1 kcal/mol at subsite A and 0.2 kcal/mol at subsite B, between satyr tragopan and chicken lysozymes. This was assumed to be responsible for the amino acid substitutions at subsite A-B at position 101 (Asp to Gly), however another substitution at position 103 (Asn to Ser) considered not to affect the change of the substrate binding affinity by the observation of identical time course of satyr tragopan lysozyme with turkey and Temminck's tragopan lysozymes that carried the identical amino acids with chicken lysozyme at this position. These results indicate that the observed decrease of binding free energy change at subsites A-B of satyr tragopan lysozyme was responsible for the amino acid substitution at position 101 (Asp to Gly).  相似文献   

17.
The conformational change of hen egg-white lysozyme (EC 3.2.1.17) induced by the interaction with tri-N-acetyl-D-glucosamine were investigated by steady state and time-resolved fluorescence spectroscopy. To identify more clearly the conformation of hen egg-white lysozyme interacting with the ligand, the fluorescence decay kinetics of the lysozyme and its complex with the ligand were precisely measured at their full spectral regions. The spectral analysis based on the time-resolved studies showed that the binding of the ligand affected not only the Trp62 directly linked to the ligand but its influence was extended to the vicinity of Trp108 and further to the hydrophobic matrix box region. Near the binding site, the intramolecular distance between Trp108 and Glu35 was expanded or contracted depending on the pH of the buffer solution. On the other hand, the interaction of Trp28 and/or Trp111 with their surroundings was reduced by restriction of fluctuational motions at the hydrophobic matrix box region.  相似文献   

18.
The pH dependence of the binding constant of (GlcNAc)3 to Asp 52-esterified lysozyme was determined by the fluorescence technique. The pK values of Asp 101 in the modified lysozyme and its complex with (GlcNAc)3 were determined to be 4.5 and 3.6, respectively, at 25 degrees C and 0.1 ionic strength. This result is different from that obtained by Parsons and Raftery ((1972) Biochemistry 11, 1633--1638), who observed no pK shift of Asp 101. The macroscopic pK value of Asp 52 in intact lysozyme determined by them using the pH difference titration data of Asp 52-esterified lysozyme relative to intact lysozyme ((1972) Biochemistry 11, 1623--1629) was 4.5, which is higher by about one pH unit than the pK value determined by our group (Kuramitsu et al. (1974) J. Biochem. 76, 671--683; (1977) ibid. 82, 585--597; (1978) ibid. 83, 159--170. We found that their pH difference titration data in the absence and presence of saccharides can be consistently interpreted in terms of our pK values of Asp 52, Glu 35, and Asp 101, if we assume that the pK value of another ionizable group (probably Asp 48) is perturbed on esterification of Asp 52.  相似文献   

19.
Trp108 of chicken lysozyme is in van der Waals contact with Glu35, one of two catalytic carboxyl groups. The role of Trp108 in lysozyme function and stability was investigated by using mutant lysozymes secreted from yeast. By the replacement of Trp108 with less hydrophobic residues, Tyr (W108Y lysozyme) and Gln (W108Q lysozyme), the activity, saccharide binding ability, stability, and pKa of Glu35 were all decreased with a decrease in the hydrophobicity of residue 108. Namely, at pH 5.5 and 40 degrees C, the activities of W108Y and W108Q lysozymes against glycol chitin were 17.3 and 1.6% of that of wild-type lysozyme, and their dissociation constants for the binding of a trimer of N-acetyl-D-glucosamine were 7.4 and 309 times larger than that of wild-type lysozyme, respectively. For the reversible unfolding at pH 3.5 and 30 degrees C, W108Y and W108Q lysozymes were less stable than wild-type lysozyme by 1.4 and 3.6 kcal/mol, respectively. As for the pKa of Glu35, the values for W108Y and W108Q lysozymes were found to be lower than that for wild-type lysozyme by 0.2 and by 0.6 pKa unit, respectively. The pKa of Glu35 in lysozyme was also decreased from 6.1 to 5.4 by the presence of 1-3 M guanidine hydrochloride, or to 5.5 by the substitution of Asn for Asp52, another catalytic carboxyl group. Thus, both the hydrophobicity of Trp108 and the electrostatic interaction with Asp52 are equally responsible for the abnormally high pKa (6.1) of Glu35, compared with that (4.4) of a normal glutamic acid residue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
To investigate the functional role of subsites E and F in lysozyme catalysis, Asn37 of hen egg-white lysozyme (HEL), which is postulated to participate in sugar residue binding at the right-sided subsite F through hydrogen bonding, was replaced by Ser or Gly by site-directed mutagenesis. The mutations of Asn37 neither significantly affected the binding constant for chitotriose nor the enzymatic activity toward the substrate glycol chitin. However, kinetic analysis with the substrate N-acetylglucosamine pentamer, (GlcNAc)(5), revealed that the conversion of Asn37 to Gly decreased the binding free energies for subsites E and F, while the conversion to Ser increased the substrate affinity at subsite F. It was further found that the rate constant of transglycosylation was reduced by these mutations. These results suggest that Asn37 is involved not only in substrate binding at subsite F but also in transglycosylation activity. No remarkable change in the tertiary structure except the side chain of the 37th residue was detected on X-ray analysis of the mutant proteins, indicating that the alterations in the enzymatic function between the wild type and mutant enzymes depend on limited structural change around the substitution site. It is thus speculated that the slight conformational difference in the side chain of position 37 may affect the substrate and acceptor binding at subsites E and F, leading to lower the efficiency of the transglycosylation activities of the mutant proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号