首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
Klebsiella aerogenes was grown in chemostat culture with the pH controlled to ±0.01 and temperature to ±0.1°C. The oxygen tension of the culture was regulated by changing the partial pressure of oxygen in the gas phase and recorded by means of an oxygen electrode. Reduced pyridine nucleotide was monitored continuously in the culture by means of direct fluorimetry. On applying an anaerobic shock to the culture, damped oscillations in pyridine nucleotide fluorescence were obtained. Further anaerobic shocks decreased the damping and eventually gave rise to undamped oscillations of a 2–3 min period which continued for several days. These oscillations were paralleled by oscillations of the same frequency in respiration rate. The amplitude of the oscillations in the respiration rate was equivalent to only 1% of the total steady-state respiration, whereas that of pyridine nucleotide oscillations was equivalent to 10% of the total aerobic/anaerobic fluorescence response. The oscillations ceased on interrupting the glucose feed but restarted on adding excess glucose to the culture. Addition of succinate also restarted the oscillations so that they appear not to be of glycolytic origin. The frequency of oscillations varied with growth rate and conditions. Oscillations of much lower frequency were obtained under limited-oxygen and anaerobic conditions than under fully aerobic conditions. Under glucose-limited conditions, fluctuations were found in adenosine triphosphate (ATP) content which were in phase with the pyridine nucleotide oscillations, but under nitrogen-limited growth conditions no such fluctuations in ATP were observed. The primary oscillating pathway could not be identified but the mechanism would appear to be quite different from that involved in oscillations observed in yeast cells. The synchronization of oscillations and observations of negative damping could be explained by a syntalysis effect.  相似文献   

2.
The steady-state levels and redox states of pyridine nucleotide pools have been studied in yeast as a function of external growth conditions. Yeast grown aerobically on 0.8% glucose show two distinct phases of logarithmic growth, a first phase utilizing glucose with ethanol accumulation, and a second phase utilizing ethanol. During growth on glucose, the size of the NADP pool (NADP+ + NADPH) is maintained at approximately 12% the size of the NAD pool (NAD+ + NADH). Upon exhaustion of glucose, the mechanism(s) that maintain the levels of NADP relative to NAD are altered, resulting in a rapid 2- to 2.5-fold decrease in the size of the NADP pool relative to the size of the NAD pool. The lower levels of NADP are maintained during growth on ethanol. The NAD pool is approximately 50% NADH during both the glucose and ethanol phases of growth, while the NADP pool is approximately 67 and 48% NADPH during the glucose and ethanol phases of growth, respectively. Rapid media transfer experiments show that the decrease in NADP is reversible, that it does not require the net synthesis of pyridine nucleotide or protein, and that changes in the size of the NADP pool relative to the total pyridine nucleotide pool are correlated with changes in the redox state of the NADP pool.  相似文献   

3.
1. When washed suspensions of Sarcina lutea are starved aerobically in phosphate buffer at the growth temperature of 37 degrees , the rate of endogenous oxygen consumption decreases to very low values after 10hr., although many of the cells survive for 40hr. If starvation is prolonged further, the bacteria die at a rate of approximately 1.5% of the initial viable population per hour. 2. Oxidation of intracellular free amino acids accounts for most of the observed endogenous oxygen uptake but RNA is also utilized and a portion of the component bases and pentose is degraded and presumably oxidized. Ammonia appears in the supernatant and some pentose and ultraviolet-absorbing nucleotide are released from the cells. DNA, protein and polysaccharide are not measurably degraded. 3. Survival can be correlated with the ability of aerobically starved bacteria to oxidize exogenous l-glutamate and glucose. When starved under nitrogen for 40hr. cells continue to oxidize their endogenous reserves at undiminished rates when transferred to aerobic conditions; on prolonging anaerobic starvation the rate of oxidation declines during the period of most rapid loss of viability. 4. In the presence of Mg(2+), RNA degradation during aerobic starvation is almost completely suppressed without affecting the period for which the bacteria survive. 5. Cells grown in peptone supplemented with glucose accumulate reserves of polysaccharide which are metabolized in aerobic starvation, together with free amino acids. Ammonia is evolved and RNA is degraded to a greater extent than in peptone-grown suspensions. Bacteria rich in polysaccharide survive less well than those which are deficient in the polymer; the reason for this phenomenon has yet to be established. 6. In peptone medium, endogenous oxygen uptake and the concentration of intracellular free amino acids decline as growth progresses and they continue to decrease when the organism is held in stationary phase. Under the conditions used, the endogenous Q(o2) and free amino acid pool of cells grown in peptone with 2% (w/v) glucose did not decline so markedly and the bacteria contained large amounts of polysaccharide at all stages of growth.  相似文献   

4.
Storey BT 《Plant physiology》1972,49(3):314-322
The cytochromes c of mung bean (Phaseolus aureus) mitochondria become reduced when sulfide, a cytochrome oxidase inhibitor free from uncoupling side effects, is added to the aerobic mitochondrial suspension in the absence of added substrate. The cytochromes b remain largely oxidized. Subsequent addition of ATP results in partial oxidation of the cytochromes c and partial reduction of the cytochromes b due to ATP-driven reverse electron transport through the second site of energy conservation, or coupling site, of the respiratory chain. Cytochrome a is also oxidized under these conditions, but there is no concomitant reduction of the flavoprotein components, of ubiquinone, or of endogenous pyridine nucleotide. The reaction is abolished by oligomycin. The reducing equivalents transported from the cytochromes c and a in ATP-driven reverse electron transport are about 2-fold greater than those which appear in the cytochromes b. It is suggested that the equivalents not accounted for are present in a coupling site enzyme at the second site of energy conservation which interacts with the respiratory chain carriers by means of the dithiol-disulfide couple; this couple would not show absorbance changes with redox state over the wavelength range examined. With succinate present, reverse electron transport can be demonstrated at both coupling sites in both the aerobic steady state and in anaerobiosis. ATP-driven reverse electron transport in anaerobiosis maintains cytochrome a 30% oxidized while endogenous pyridine nucleotide is 50% reduced.  相似文献   

5.
The oxidation-reduction state of bovine epididymal spermatozoa was determined in vitro by fluorescence spectroscopy and by direct chemical analysis. Enhanced NADH fluorescence in sperm was observed with the onset of anaerobiosis in the sample cuvette. However, part of this increased fluorescence was temporary and a stable pyridine nucleotide fluorescence was not reached until 25 min after the onset of anaerobiosis. The transient was not paralleled by an equivalent increase in cellular NADH as measured by absorption spectroscopy. Hypotonic treatment of sperm, which removed the plasma membrane, liberated greater than 50% of the cellular NAD and that remaining was reduced by rotenone addition, indicating its mitochondrial location. Hypotonically treated sperm did not demonstrate a transient fluorescence above that due to the increases in NADH from anaerobiosis. Addition of pyruvate to anaerobic sperm resulted in a rapid decrease in fluorescence that corresponded to NADH oxidation coupled with the reduction of pyruvate to lactate. The duration of this oxidized state was dependent on the amount of pyruvate added. Analysis of cellular NAD under similar conditions confirmed this result. The pyridine nucleotides of hypotonically treated cells were also oxidized by pyruvate but were not reduced by added glucose as in untreated sperm. These results indicate that pyruvate reduction served to balance reducing equivalents and temporarily reoxidized the intracellular milieu of the anaerobic spermatozoon. The data also support the hypothesis that pyruvate and lactate can serve as reducing equivalent carriers between cytosol and mitochondria.  相似文献   

6.
Measurements with a PAM fluorometer showed that the photochemical activity of photosystem II (PS II) in sulfur-deprived Chlamydomonas reinhardtii cells (media TAP-S) decreases slowly under aerobic conditions. In a closed cultivator, when the rate of O2 photosynthetic evolution declines below the rate of respiration, the cell culture is under anaerobic conditions in which the activation of hydrogenase and the production of hydrogen take place. We found that the slow decrease in PS II activity is followed by an abrupt inactivation of PS II centers just after the onset of anaerobiosis. This fast PS II inactivation is reversed by aeration of the media and is accompanied by an increase in the fluorescence parameter Ft. Moreover, the rate of the abrupt PS II inactivation diminished after the addition into the medium of electron acceptors such as CO2 (carbonate-bicarbonate buffer), NO3- and SO4(2-) , the assimilation of which in chloroplasts requires a lot of reductants. We suggest that the PS II inactivation is due to the overreduction of the plastoquinone pool after the onset of anaerobiosis.  相似文献   

7.
1. Lactic acid and succinic acid (end products of anaerobiosis) also occur under aerobic conditions in the haemolymph and excretion products of Biomphalaria glabrata. This phenomenon has been investigated in more detail. 2. Experiments on oxygen uptake, and analyses of organic acid, amino acid and calcium were carried out under various aerating conditions, various temperatures and in various water qualities. 3. No differences were found in the concentrations of the organic acids and calcium in the haemolymph under different aerating conditions. 4. Neither snail-conditioned water, nor artificial crowding effects played a role in the initiation of anaerobic respiration. 5. A low exposure temperature (4 degrees C) initiated anaerobic respiration in spite of the aeration.  相似文献   

8.
Studies on the endogenous metabolism of Escherichia coli   总被引:13,自引:0,他引:13       下载免费PDF全文
1. The endogenous metabolism of Escherichia coli has been studied by examining changes in cellular composition and of the suspending fluid during starvation of washed suspensions of the organism, in water or in phosphate buffer, at 37° under aerobic and anaerobic conditions. 2. When E. coli is grown in glucose–ammonium salts media the cells contain glycogen, which is utilized rapidly during subsequent starvation of the cells. 3. Ammonia is released by starved cells only after a lag period, which corresponds to the time taken for the cellular glycogen to be almost completely utilized. 4. If cells are grown under conditions that permit incorporation of 14C into protein but not into glycogen and are then starved, release of 14CO2 commences immediately and continues at a linear rate throughout the period of glycogen utilization; it is concluded that the presence of glycogen in the cell prevents the net degradation of nitrogenous materials but does not suppress protein turnover. 5. RNA is degraded by the cells immediately they are starved, ribose is oxidized and ultraviolet-absorbing materials are released to the suspending medium. 6. There is no significant utilization of lipid during the starvation of glucose-grown E. coli. 7. There is no loss of viability during the initial 12hr. period of starvation under either aerobic or anaerobic conditions, but thereafter the cells die more rapidly under conditions of anaerobiosis. 8. These results are discussed in relation to the known patterns of endogenous metabolism and survival of other bacteria.  相似文献   

9.
Irradiation of starved cultures of Saccharomyces cerevisiae with blue light under aerobic conditions inhibited the capacity of the yeast cells to respire added substrates (e.g., ethanol) and stimulated endogenous respiration. Spectroscopic examination of the cells showed that the irradiation destroyed both cytochrome a and a3 components of cytochrome oxidase and a part of the cytochrome b. Irradiation under anaerobic conditions had no effect on the respiratory capacity or the cytochrome content of the cells. Under aerobic conditions cytochrome a3 was protected against photodestruction when complexed with cyanide and cytochrome a was protected when complexed with azide.  相似文献   

10.
The effect of anaerobiosis on the induction of the xanthophyll cycle was investigated in Chlamydomonas reinhardtii. The results showed that, anaerobiosis obtained by either sulfur starvation or by bubbling nitrogen in the culture grown in complete medium induced the xanthophyll cycle even when cultures were exposed to low light conditions. The zeaxanthin content reached 35 mmol mol?1 Chl a, after 110 h in anaerobic sulfur-starved cultures, and 30 mmol mol?1 Chl a within 24 h in sulfur replete cultures bubbled with nitrogen. Both starved and non-starved cultures grown under aerobic conditions, did not exhibit any sizeable increase in the zeaxanthin content. Chlorophyll fluorescence measurements revealed a decrease in the maximum photochemical quantum yield of PSII (Fv/Fm) by more than 50 %. The chlorophyll fluorescence kinetics (OJIP) analysis showed a strong rise at the J-step indicating a strong reduction of QA. Our findings demonstrated that anaerobiosis in low light exposed cultures induced the xanthophyll cycle through a strong increase of the level of plastoquinone pool reduction, which was associated to the formation of a trans-thylakoid membranes proton gradient, while in dark anaerobic cultures, no appreciable induction of xanthophyll cycle could be observed, despite the sizeable increase in non–photochemical quenching.  相似文献   

11.
Nicotinamide adenine dinucleotide phosphate (reduced form) is formed more rapidly after the addition of thiosulfate to suspensions of intact Thiobacillus neapolitanus in the absence of CO(2) than nicotinamide adenine dinucleotide (reduced form). Measurement of acid-stable metabolites shows this phenomenon to be the result of rapid reoxidation of nicotinamide adenine dinucleotide (reduced form) by 3-phosphoglyceric acid and other oxidized intermediates, which are converted to triose and hexose phosphates, and that, in reality, the rate of nicotinamide adenine dinucleotide (oxidized form) reduction exceeds that of nicotinamide adenine dinucleotide phosphate (oxidized form) by approximately 4.5-fold. The overall rate of pyridine nucleotide reduction by thiosulfate (264 nmol per min per mg of protein) is in excess of that rate needed to sustain growth. Pyridine nucleotide reduction, adenosine triphosphate synthesis, and carbohydrate synthesis are prevented by the uncoupler m-Cl-Carbonylcyanide phenylhydrazone. Sodium amytal inhibits pyridine nucleotide reduction and carbohydrate synthesis are prevented by the uncoupler m-Cl-carbonylcyanide observations are reproduced when sulfide serves as the substrate. The rate of pyridine nucleotide anaerobic reduction with endogenous substrates or thiosulfate is less than 1% of the aerobic rate with thiosulfate. We conclude that the principal, if not the only, pathway of pyridine nucleotide reduction proceeds through an energy-dependent and amytal-sensitive step when either thiosulfate or sulfide is used as the substrate.  相似文献   

12.
13.
Metabolic control reactions have been studied in the intact toad bladder by means of fluorescence spectrophotometric measurement of reduced pyridine nucleotide and by measurement of respiration with the platinum electrode. substrates such as pyruvate and succinate lead to prompt increases in reduction level of pyridine nucleotide with only slight acceleration of respiration. major metabolic control is exerted by adp, which depletes the intact bladder of reduced pyridine nucleotide and accelerates respiration. respiratory control ratios, as for isolated mitochondria, depend upon the substrate being metabolized. a significant fraction of added adp appears to gain entry into the intact toad bladder and is converted to atp, anaerobiosis and amobarbital lead to increased levels of reduction of pyridine nucleotide. the spectroscopic and metabolic properties of the reduced pyridine nucleotide being studied identify it with that fraction of dpnh which is bound at one of the energy conservation sites linking phosphorylation reactions with electron transfer.  相似文献   

14.
The purpose of this study was to determine if and how the two genetically distinct forms, marsh and dune, of Sporobolus virginicus (L.) Kunth. tolerate anaerobic substrates. The treatments in the hydroponic study, conducted in the greenhouse for approximately 6 months, involved growing the marsh and dune forms in aerobic, anaerobic, and alternating aeration treatments. Plants were examined for morphological and physiological responses to the aeration treatments. In response to the continuous anaerobic treatment, the dune form of S. virginicus exhibited increased stolon biomass, but no difference of total biomass or rhizome aerenchyma when compared with the aerobic treatment. In response to alternating aeration, rhizome aerenchyma increased, total biomass decreased, and stolon biomass remained constant. Belowground transport of oxygen enabled the root tissue in all of the aeration treatments to maintain aerobic respiration. The marsh form grown in the alternating aeration treatment had the same total biomass but more rhizome aerenchyma when compared to the aerobic treatment. Growth in the continuous anaerobic treatment resulted in a reduction of total biomass and increased rhizome arenchyma. Marsh form roots did not appear to be respiring anaerobically or producing ethanol or additional malate at the time of harvest; however, root respiration was higher in the anaerobic and alternating treatments. The marsh and dune forms of S. virginicus were able to adjust morphologically or physiologically or to use existing morphological features to tolerate anaerobic substrates. Thus, it appears that the distribution of the two forms of S. virginicus found in coastal sand dunes and in salt marshes is not limited by differences in ability to tolerate waterlogged soils.  相似文献   

15.
The effect of aeration during cell growth on the subsequent reduction of 2-hexanone and 2-octanone by yeast cells entrapped in calcium alginate beads was studied. The reactions were conducted using 2-propanol as a sacrificial substrate to regenerate the cofactor NAD(H), and a mixture of (S)- and (R)-alcohols was produced. The use of strictly aerobic conditions when growing the cells resulted in the highest initial reaction rates, as well as the production of only a single product (i.e., the enantiomeric excess of the (S)-alcohols was 1.0). However, initial reaction rates decreased proportionally with fermentation time regardless of whether the yeast were grown aerobically or under both aerobic and anaerobic conditions. The data also suggest that it is the aerobic (or anaerobic) condition, rather than the cell growth phase, which is responsible for the results seen.  相似文献   

16.
Baker’s yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125–150 million years ago in the Saccharomyces lineage. The “invention” of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The “invention” of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to “starve” competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently “invented” as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.  相似文献   

17.
The freeze-thaw tolerance of Saccharomyces cerevisiae was examined throughout growth in aerobic batch culture. Minimum tolerance to rapid freezing (immersion in liquid nitrogen; cooling rate, approximately 200 degrees C min-1) was associated with respirofermentative (exponential) growth on glucose. However, maximum tolerance occurred not during the stationary phase but during active respiratory growth on ethanol accumulated during respirofermentative growth on glucose. The peak in tolerance occurred several hours after entry into the respiratory growth phase and did not correspond to a transient accumulation of trehalose which occurred at the point of glucose exhaustion. Substitution of ethanol with other carbon sources which permit high levels of respiration (acetate and galactose) also induced high freeze-thaw tolerance, and the peak did not occur in cells shifted directly from fermentative growth to starvation conditions or in two respiratorily incompetent mutants. These results imply a direct link with respiration, rather than exhaustion of glucose. The role of ethanol as a cryoprotectant per se was also investigated, and under conditions of rapid freezing (cooling rate, approximately 200 degrees C min-1), ethanol demonstrated a significant cryoprotective effect. Under the same freezing conditions, glycerol had little effect at high concentrations and acted as a cryosensitizer at low concentrations. Conversely, under slow-freezing conditions (step freezing at -20, -70, and then -196 degrees C; initial cooling rate, approximately 3 degrees C min-1), glycerol acted as a cryoprotectant while ethanol lost this ability. Ethanol may thus have two effects on the cryotolerance of baker's yeast, as a respirable carbon source and as a cryoprotectant under rapid-freezing conditions.  相似文献   

18.
1. The effect of aeration on the key enzymes of gluconeogenesis was studied in baker's yeast (Saccharomyces cerevisiae) and in a nonrespiratory variant of S. cerevisiae grown under glucose limitation. 2. In baker's yeast phosphoenolpyruvate carboxykinase, hexosediphophatase and isocitrate lyase were completely repressed under anaerobic conditions. Their repression could be partially reversed by using intense aeration. 3. In the nonrespiratory variant these enzymes were absent independently of aeration. 4. Pyruvate carboxylase of baker's yeast showed maximal activity under anaerobic conditions. In the nonrespiratory variant pyruvate carboxylase had low activity under both anaerobic and aerobic conditions.  相似文献   

19.
The isolation of a new class of mutants permitting facultative anaerobiosis in Neurospora crassa is described. Backcross analyses to the obligate aerobe prototroph (An -) indicate single nuclear gene inheritance (An -/An +). An + and An - are indistinguishable in morphology and growth rates under aerobic conditions. Anaerobic growth requires nutritional supplements that are dispensable for aerobic growth. Conidiogenesis, conidial germination, and vegetative growth rate are suppressed by anaerobiosis. An + mutants produce substantial quantities of ethanol under anaerobic conditions. Anaerobiosis and chloramphenicol both affect mitochondrial enzyme activity and morphology. Chloramphenicol inhibition leads to reduction in cytochrome oxidase and swollen mitochondria with few cristae. Anaerobiosis leads to reduction in both cytochrome oxidase and malate dehydrogenase activities, enlarged mitochondria with fewer cristae, enlarged nuclei, and other alterations in cellular morphology. The fine structure of anaerobically grown cells changes with the time of anaerobic growth. We conclude that either inhibition of mitochondrial membrane synthesis or inhibition of respiration might lead to the observed alterations in mitochondria.  相似文献   

20.
The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic protein degradation (24% of total protein) took place almost exclusively during the initial 24 h of starvation. Metabolized carbon was recovered mainly as CO(inf2) during aerobic starvation. In contrast, cell biomass decreased by only 2.4% during anaerobic starvation, and metabolized carbon was recovered mainly as organic solutes in the starvation medium. During anaerobic starvation, only the concentration of intracellular low-molecular-weight compounds decreased, whereas no significant changes were measured for cellular protein, lipids, polysaccharides, and nucleic acids. Strain WP 12 was also capable of a limited anaerobic glucose metabolism in the absence of added electron acceptors. Small amounts of CO(inf2) and organic acids, including acetate, were produced from exogenous glucose under anoxic conditions. Addition of potential anaerobic electron acceptors (fumarate, nitrate, nitrite, or sulfate) to starved cultures of the methanotrophs Methylobacter albus BG8, Methylosinus trichosporium OB3b, and strain WP 12 did not stimulate anaerobic survival. However, anaerobic starvation of these bacteria generally resulted in better survival than did aerobic starvation. The results suggest that methanotrophic bacteria can enter a state of anaerobic dormancy accompanied by a severe attenuation of endogenous metabolism. In this state, maintenance requirements are presumably provided for by fermentation of certain endogenous substrates. In addition, low-level catabolism of exogenous substrates may support long-term anaerobic survival of some methanotrophic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号