首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because many osteoporotic fractures occur during a fall, understanding the effect of off-axis loads on initiation and propagation of microdamage in trabecular bone should provide further insight into the biomechanics of age-related fractures. Fourteen on-axis cylindrical specimens were prepared from 12 bovine tibiae. Fluorescent stains were used to label the microdamage due to a sequence of compressive and torsional damaging loads. The mean decrease in Young's modulus was over four times greater than that in the shear modulus after the compressive overload, while there was no difference between the decrease in the axial and torsional stiffnesses after the torsional overload. The total microcrack density due to compression was uniform across the radius of the cylindrical specimens, while the mean density of microcracks due to torsional overloading increased from the axis of the cylindrical specimen to the circumference. The high density of microcracks near the axis of the specimen following torsional overloading was unexpected because of the low strains. Nearly 40% of the microcracks due to torsion propagated from pre-existing microcracks caused by axial compression, indicating that existing microcracks may extend at relatively low strain if the loading mode changes. The propagating microcracks were, on average, longer than the initiating microcracks due to either compressive or torsional loading. Damage due to axial compression appears to increase the susceptibility of trabecular bone to damage propagation during subsequent torsional loads, but it has little effect on the elastic properties in shear.  相似文献   

2.
External pneumatic compression of the lower legs is effective as prophylaxis against deep vein thrombosis. In a typical application, inflatable cuffs are wrapped around the patient's legs and periodically inflated to prevent stasis, accelerate venous blood flow, and enhance fibrinolysis. The purpose of this study was to examine the stress distribution within the tissues, and the corresponding venous blood flow and intravascular shear stress with different external compression modalities. A two-dimensional finite element analysis (FEA) was used to determine venous collapse as a function of internal (venous) pressure and the magnitude and spatial distribution of external (surface) pressure. Using the one-dimensional equations governing flow in a collapsible tube and the relations for venous collapse from the FEA, blood flow resulting from external compression was simulated. Tests were conducted to compare circumferentially symmetric (C) and asymmetric (A) compression and to examine distributions of pressure along the limb. Results show that A compression produces greater vessel collapse and generates larger blood flow velocities and shear stresses than C compression. The differences between axially uniform and graded-sequential compression are less marked than previously found, with uniform compression providing slightly greater peak flow velocities and shear stresses. The major advantage of graded-sequential compression is found at midcalf. Strains at the lumenal border are approximately 20 percent at an external pressure of 50 mmHg (6650 Pa) with all compression modalities.  相似文献   

3.
There is a need to align the mechanical axis of the tibia with the axis of loading for studies involving tibiofemoral compression to interpret results and to ensure repeatability of loading within and among specimens. Therefore, the objectives of this study were (1) to develop a magnetic resonance imaging (MRI)-based alignment method for use with apparatuses applying tibiofemoral joint compression, (2) to demonstrate the usefulness of the method by aligning cadaveric knees in an apparatus that could apply tibiofemoral joint compression, and (3) to quantify the error associated with the alignment method. A four degree-of-freedom adjustable device was constructed to allow determination and alignment of the mechanical axis of the tibia of cadaveric knee joints with the axis of loading of an apparatus applying tibiofemoral joint compression. MRI was used to determine the locations of bony landmarks in three dimensions defining the mechanical axis of the tibia relative to an initial orientation of the four degree-of-freedom device. Adjustment values of the device were then computed and applied to the device to align the mechanical axis of the tibia with the axis of a compressive loading apparatus. To demonstrate the usefulness of the method, four cadaveric knees were aligned in the compressive loading apparatus. The vectors describing the mechanical axis of the tibia and the loading axis of the apparatus before and after adjustment of the four degree-of-freedom device were computed for each cadaveric knee. After adjustment of the four degree-of-freedom device, the mechanical axis of the tibia was collinear with the loading axis of the apparatus for each cadaveric knee. The errors in the adjustment values introduced by inaccuracies in the MR images were quantified using the Monte Carlo technique. The precisions in the translational and rotational adjustments were 1.20 mm and 0.90 deg respectively. The MR-based alignment method will allow consistent interpretation of results obtained during tibiofemoral compressive studies conducted using the apparatus described in this paper by providing a well-defined loading axis. The alignment method can also be adapted for use with other apparatuses applying tibiofemoral compression.  相似文献   

4.
Das B  Johnson PC  Popel AS 《Biorheology》1998,35(1):69-87
Hematocrit distribution and red blood cell aggregation are the major determinants of blood flow in narrow tubes at low flow rates. It has been observed experimentally that in microcirculation the hematocrit distribution is not uniform. This nonuniformity may result from plasma skimming and cell screening effects and also from red cell sedimentation. The goal of the present study is to understand the effect of nonaxisymmetric hematocrit distribution on the flow of human and cat blood in small blood vessels of the microcirculation. Blood vessels are modeled as circular cylindrical tubes. Human blood is described by Quemada's rheological model, in which local viscosity is a function of both the local hematocrit and a structural parameter that is related to the size of red blood cell aggregates. Cat blood is described by Casson's model. Eccentric hematocrit distribution is considered such that the axis of the cylindrical core region of red cell suspension is parallel to the axis of the blood vessel but not coincident. The problem is solved numerically by using finite element method. The calculations predict nonaxisymmetric distribution of velocity and shear stress in the blood vessel and the increase of apparent viscosity with increasing eccentricity of the core.  相似文献   

5.
We have conducted a series of fatigue tests on samples of bovine compact bone loaded in cyclic torsion. The fatigue strength (i.e. the range of stress needed to cause failure in a given number of cycles) was found to be lower than the fatigue strength of the same material in compression by more than a factor of two. We also tested intact chicken metatarsals and found a similar reduction in strength compared to compression testing of chicken tibiae. These results were predicted using a theoretical model in which fatigue failure was assumed to be dependent on the growth of microcracks, oriented approximately parallel to the bone's longitudinal axis but having misorientation angles of up to 30 degrees. An effective stress range was derived which is a function of the normal and shear stresses, and thus of the Mode I and Mode II stress intensities experienced by the crack. These results may have important consequences for the understanding of fatigue in bone in vivo; relatively small amounts of longitudinal shear stress, which are often ignored in analysis, may contribute significantly to fatigue failures. This may shed light on the phenomenon of stress fractures and on the need for repair and adaptation in living bone.  相似文献   

6.
If a bone's morphologic organization exhibits the accumulated effects of its strain history, then the relative contributions of a given strain stimulus to a bone's development may be inferred from a bone's hierarchical organization. The artiodactyl calcaneus is a short cantilever, loaded habitually in bending, with prevalent compression in the cranial (Cr) cortex, tension in the caudal (Cd) cortex, and shear in the medial and lateral cortices (i.e., neutral axis). Artiodactyl calcanei demonstrate unusually heterogeneous structural and material organization between these cortices. This study examines potential relationships between developmental morphologic variations and the functional strain distribution of the deer calcaneus. One calcaneus was obtained from each of 36 (fetus to adult) wild deer. Predominant collagen fiber orientation (CFO), microstructural characteristics, mineral content (% ash), and geometric parameters were determined from transversely cut segments. Radiographs were examined for arched trabeculae, which may reflect tension/compression stress trajectories. Results showed that cross-sectional shape changes with age from quasi-circular to quasi-elliptical, with the long axis in the cranial-caudal direction of habitual bending. Cranial ("compression") cortical thickness increased at a greater rate than the Cd ("tension") cortex. Fetal bones exhibited arched trabeculae. Percent ash was not uniform (Cr > Cd), and this disparity increased with age (absolute differences: 2.5% fetuses, 4.3% adults). Subadult bones showed progressively more secondary osteons and osteocyte lacunae in the Cr cortex, but the Cd cortex tended to have more active remodeling in the subadult and adult bones. Nonuniform Cr:Cd CFO patterns first consistently appear in the subadults, and are correlated with secondary bone formation and habitual strain mode. Medial and lateral cortices in these groups exhibited elongated secondary osteons. These variations may represent "strain-mode-specific" (i.e., tension, compression, shear) adaptations. The heterogeneous organization may also be influenced by variations in longitudinal strain magnitude (highest in the Cr cortex) and principal strain direction-oblique in medial-lateral cortices (where shear strains also predominate). Other factors such as local reductions in longitudinal strain may influence the increased remodeling activity of the Cd cortex. Some structural variations, such as arched trabeculae, that are established early in ontogeny may be strongly influenced by genetic- or epigenetic-derived processes. Material variations, such as secondary osteon population densities and CFO, which appear later, may be products of extragenetic factors, including microdamage.  相似文献   

7.
A general method of calculating forces, torques, and translational and rotational velocities of rigid, neutrally buoyant spheres suspended in viscous liquids undergoing a uniform shear flow has been given by Arp and Mason (1977). The method is based on the matrix formulation of hydrodynamic resistances in creeping flow by Brenner and O'Neill (1972). We describe the solution of the Brenner-O'Neill force-torque vector equation in terms of the particle and external flow field coordinates and derive expressions for the normal force acting along, and the shear force acting perpendicular to, the axis of the doublet of spheres, the latter explicitly given for the first time. The equations consist of a term comprising force and torque coefficients obtained from the matrices of the hydrodynamic resistances (functions of the distance h between sphere surfaces which have been computed), and terms comprising the orientation of the doublet axis relative to the coordinates of the external flow field and the shear stress (which can be experimentally determined). We have applied the theory to a system of doublets of sphered, hardened human red cells of group A or B antigenic type cross-linked by the corresponding antibody at a fixed interparticle distance. Working from studies of the breakup of doublets of red cells in an accelerating Poiseuille flow, given in the succeeding paper, we are able to compute the hydrodynamic force required to separate the two spheres. Previous work has shown that the theory can be applied to doublets in a variable shear, Poiseuille flow, provided the ratio of particle to tube diameter is small. In calculating the force-torque coefficients it was assumed that the cells are crosslinked by antibody with h = 20 nm.  相似文献   

8.
The dynamic response of soft human tissues in hydrostatic compression and simple shear is studied using the Kolsky bar technique. We have made modifications to the technique that allow loading of a soft tissue specimen in hydrostatic compression or simple shear. The dynamic response of human tissues (from stomach, heart, liver, and lung of cadavers) is obtained, and analyzed to provide measures of dynamic bulk modulus and shear response for each tissue type. The dynamic bulk response of these tissues is easily described by a linear fit for the bulk modulus in this pressure range, whereas the dynamic shearing response of these tissues is strongly non-linear, showing a near exponential growth of the shear stress.  相似文献   

9.
This paper communicates a novel and robust method for the mechanical testing of thin layers of soft biological tissues with particular application to porcine skin. The key features include the use of a surgical dermatome and the highly defined deformation kinematics achieved by pure shear testing. Thin specimens of accurate thickness were prepared using a dermatome and were subjected to different quasi-static and dynamic loading protocols. Although simple in its experimental realisation, pure shear testing provides a number of advantages over other classic uni- and biaxial testing procedures. The preparation of thin specimens of porcine dermis, the mechanical tests as well as first representative results are described and discussed in detail. The results indicate a pronounced anisotropy between the directions along and across the cleavage lines and a strain rate-dependent response.  相似文献   

10.
A new method of protein electrophoresis is described here. Electrophoretic separation is performed in gel media with uniform concentration of immobilized charges, combined with porosity gradient directed against protein movement. Successful separation becomes possible due to the effect of strong sample zone compression; the latter effect is connected with complex conductivity profile dynamics in a gel system containing immobilized charges. Immobilized buffers combined with porosity gradient provide an opportunity of protein discrimination based on molecular size, while in the case of uniform gel concentration the separation is based on mobility differences and strongly affected by non-uniform electric field strength profile. The proposed method does not require ionic detergent for protein separation according to their molecular weight.  相似文献   

11.
Current techniques for measuring the bulk shear or elastic (E) modulus of small samples of soft materials are usually limited by materials handling issues. This paper describes a nondestructive testing method based on embedded spherical inclusions. The technique simplifies materials preparation and handling requirements and is capable of continuously monitoring changes in stiffness. Exact closed form derivations of E as functions of the inclusion force-displacement relationship are presented. Analytical and numerical analyses showed that size effects are significant for medium dimensions up to several times those of the inclusion. Application of the method to DNA-crosslinked gels showed good agreement with direct compression tests.  相似文献   

12.
13.
The resistance of goose (Anser anser f. domestica) eggs to damage was determined by measuring the average rupture force, specific deformation and rupture energy during their compression at different compression speeds (0.0167, 0.167, 0.334, 1.67, 6.68 and 13.36 mm/s). Eggs have been loaded between their poles (along X axis) and in the equator plane (Z axis). The greatest amount of force required to break the eggs was required when eggs were loaded along the X axis and the least compression force was required along the Z axis. This effect of the loading orientation can be described in terms of the eggshell contour curvature. The rate sensitivity of the eggshell rupture force is higher than that observed for the Japanese quail’s eggs.  相似文献   

14.
Examination of rat tail tendon units in scanning electron microscopy (SEM) after the removal of the endotendinium by the use of swelling agents and in comparison with controls confirms and extends our knowledge of a substantially planar crimping along the fibre axis. Polarizing optical microscopy of intact units subjected to lateral compression of controlled direction indicates a definite transverse mechanical anisotropy directly related to the morphological defined crimp plane, sensitive to shear disruption but capable of reconstitution on low strain cyclin.  相似文献   

15.
A biphasic mixture model is developed that can account for the observed tension-compression nonlinearity of cartilage by employing the continuum-based Conewise Linear Elasticity (CLE) model of Curnier et al. (J. Elasticity, 37, 1-38, 1995) to describe the solid phase of the mixture. In this first investigation, the orthotropic octantwise linear elasticity model was reduced to the more specialized case of cubic symmetry, to reduce the number of elastic constants from twelve to four. Confined and unconfined compression stress-relaxation, and torsional shear testing were performed on each of nine bovine humeral head articular cartilage cylindrical plugs from 6 month old calves. Using the CLE model with cubic symmetry, the aggregate modulus in compression and axial permeability were obtained from confined compression (H-A = 0.64 +/- 0.22 MPa, k2 = 3.62 +/- 0.97 x 10(-16) m4/N.s, r2 = 0.95 +/- 0.03), the tensile modulus, compressive Poisson ratio, and radial permeability were obtained from unconfined compression (E+Y = 12.75 +/- 1.56 MPa, v- = 0.03 +/- 0.01, kr = 6.06 +/- 2.10 x 10(-16) m4/N.s, r2 = 0.99 +/- 0.00), and the shear modulus was obtained from torsional shear (mu = 0.17 +/- 0.06 MPa). The model was also employed to predict the interstitial fluid pressure successfully at the center of the cartilage plug in unconfined compression (r2 = 0.98 +/- 0.01). The results of this study demonstrate that the integration of the CLE model with the biphasic mixture theory can provide a model of cartilage that can successfully curve-fit three distinct testing configurations while producing material parameters consistent with previous reports in the literature.  相似文献   

16.
The high degree of porosity of cancellous bone makes elastic property measurement difficult by traditional mechanical testing methods. An ultrasonic technique is described with which mechanical properties of anisotropic, rigid, porous materials, such as cancellous bone, can be measured. The technique utilizes unique piezoelectric transducers operated in a continuous wave mode at a frequency of approximately 50 kHz. Both longitudinal and shear waves can be propagated and received with the transducers allowing both Young's moduli and shear moduli to be determined with the technique. A comparison between moduli measured with the ultrasonic technique and moduli measured with traditional mechanical testing shows the new method to be quite accurate in elastic property determination, (r2 = 0.935, Emech = 1.00E1dt + 23.3 MPa) (r2 = 0.656, Gmech = 1.08 Gult--3.3MPa).  相似文献   

17.
A newly developed 90 degrees angled blade plate that permits high interfragmentary compression with a potential sliding way of 9 mm, is described. In the majority of intertrochanteric osteotomies, and especially when applying "functional pre-bending", the use of an external compression device is not necessary with this plate. The plate consists of 2 modules which permit a temporary thickening of the plate up to 10 mm, and the principle of dynamic compression can be performed with a 45 degree screw hole for the sliding way of 9 mm. The results of testing showed that a compression force of up to 1200 N was possible. The resulting interfragmentary compression could not be increased even with the aid of an external compression device or by idealized experimental conditions. Whenever dynamic compression is necessary for fixation, the modular compression principle described here can be used with any other plate system.  相似文献   

18.
Age-related increases in trabecular bone porosity, as seen in osteoporosis, not only affect the strength and stiffness, but also potentially the mechanobiological response of bone. The mechanical interaction between trabecular bone and bone marrow is one source of mechanobiological signaling, as many cell populations in marrow are mechanosensitive. However, measuring the mechanics of this interaction is difficult, due to the length scales and geometric complexity of trabecular bone. In this study, a multi-scale computational scheme incorporating high-resolution, tissue-level, fluid–structure interaction simulations with discrete cell-level models was applied to characterize the potential effects of trabecular porosity and marrow composition on marrow mechanobiology in human femoral bone. First, four tissue-level models with different volume fractions (BV/TV) were subjected to cyclic compression to determine the continuum level shear stress in the marrow. The calculated stress was applied to three detailed models incorporating individual cells and having differing adipocyte fractions. At the tissue level, compression of the bone along its principal mechanical axis induced shear stress in the marrow ranging from 2.0 to 5.6 Pa, which increased with bone volume fraction and strain rate. The shear stress was amplified at the cell level, with over 90% of non-adipocyte cells experiencing higher shear stress than the applied tissue-level stress. The maximum shear stress decreased by 20% when the adipocyte volume fraction (AVF) increased from 30%, as seen in young healthy marrow, to 45 or 60% AVF typically found in osteoporotic patients. The results suggest that increasing AVF has similar effects on the mechanobiological signaling in bone marrow as decreased volume fraction.  相似文献   

19.
We have developed a novel mechanically active cartilage culture device capable of modulating the interplay between compression and shear, at physiologic stress levels (2-5 MPa). This triaxial compression culture system subjects cylindrical cartilage explants to pulsatile axial compression from platen contact, plus pulsatile radially transverse compression from external fluid compression. These compressive loads can be independently modulated to impose stress states that resemble normal physiologic loading, and to investigate perturbations of individual components of the multi-axial stress state, such as increased shear stress. Based on the observation that joint incongruity predisposes cartilage to premature degeneration, we hypothesized that cartilage extracellular matrix (ECM) synthesis would be inhibited under conditions of low transverse buttressing (high shear stress). To test this hypothesis, we compared ECM synthesis in human cartilage explants exposed to axial compression without transverse compression (high shear stress), versus explants exposed to axial compression plus an equal level of transverse compression (low shear stress). Both total (35)SO(4) incorporation and aggrecan-specific (35)SO(4) incorporation were significantly inhibited by axial compression, relative to axial plus transverse compression.  相似文献   

20.
Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young''s moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号