首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polyethylene glycol dehydrogenase (PEGDH) from Sphingopyxis terrae (formerly Sphingomonas terrae) is composed of 535 amino acid residues and one flavin adenine dinucleotide per monomer protein in a homodimeric structure. Its amino acid sequence shows 28.5 to 30.5% identity with glucose oxidases from Aspergillus niger and Penicillium amagasakiense. The ADP-binding site and the signature 1 and 2 consensus sequences of glucose-methanol-choline oxidoreductases are present in PEGDH. Based on three-dimensional molecular modeling and kinetic characterization of wild-type PEGDH and mutant PEGDHs constructed by site-directed mutagenesis, residues potentially involved in catalysis and substrate binding were found in the vicinity of the flavin ring. The catalytically important active sites were assigned to His-467 and Asn-511. One disulfide bridge between Cys-379 and Cys-382 existed in PEGDH and seemed to play roles in both substrate binding and electron mediation. The Cys-297 mutant showed decreased activity, suggesting the residue's importance in both substrate binding and electron mediation, as well as Cys-379 and Cys-382. PEGDH also contains a motif of a ubiquinone-binding site, and coenzyme Q10 was utilized as an electron acceptor. Thus, we propose several important amino acid residues involved in the electron transfer pathway from the substrate to ubiquinone.  相似文献   

2.
SNAT4 is a system A type amino acid transporter that primarily expresses in liver and mediates the transport of L-alanine. To determine the critical amino acid residue(s) involved in substrate transport function of SNAT4, we used hydrosulfate cross-linking MTS reagents - MMTS and MTSEA. These two reagents caused inhibition of L-alanine transport by wild-type SNAT4. There are 5 cysteine residues in SNAT4 and among them; residues Cys-232 and Cys-345 are located in the transmembrane domains. Mutation of Cys-232, but not Cys-345, inhibited transport function of SNAT4 and also rendered SNAT4 less sensitive to the cross-linking by MMTS and MTSEA. The results suggested that TMD located Cys-232 is an aqueous accessible residue, likely to be located close to the core of substrate binding site. Mutation of Cys-232 to serine similarly attenuated the transport of L-alanine substrate. Biotinylation analysis showed that C232A mutant of SNAT4 was equally capable as wild-type SNAT4 of expressing on the cell surface. Moreover, single site mutant, C232A was also found to be more resistant to MTS inhibition than double mutant C18A,C345A, further confirming the aqueous accessibility of Cys-232 residue. We also showed that mutation of Cys-232 to alanine reduced the maximal velocity (Vmax), but had minimal effect on binding affinity (Km). Together, these data suggest that residue Cys-232 at 4th transmembrane domain of SNAT4 has a major influence on substrate transport capacity, but not on substrate binding affinity.  相似文献   

3.
Cys-29 and Cys-251 of Streptomyces albus valine dehydrogenase (ValDH) were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydroganase sequences. To ascertain the functional role of these cysteine residues in S. albus ValDH, site-directed mutagenesis was performed to change each of the two residues to serine. Kinetic analyses of the enzymes mutated at Cys-29 and Cys-251 revealed that these residues are involved in catalysis. We also constructed mutant ValDH by substituting valine for leucine at 305 by site-directed mutagenesis. This residue was chosen, because it has been proposed to be important for substrate discrimination by phenylalanine dehydrogenase (PheDH) and leucine dehydrogenase (LeuDH). Kinetic analysis of the V305L mutant enzyme revealed that it is involved in the substrate binding site. However it displayed less activity than the wild type enzyme toward all aliphatic and aromatic amino acids tested.  相似文献   

4.
System l-amino acid transporters (LAT) belong to the amino acid, polyamine, and organic cation superfamily of transporters and include the light subunits of heteromeric amino acid transporters and prokaryotic homologues. Cysteine reactivity of SteT (serine/threonine antiporter) has been used here to study the substrate-binding site of LAT transporters. Residue Cys-291, in transmembrane domain 8 (TM8), is inactivated by thiol reagents in a substrate protectable manner. Surprisingly, DTT activated the transporter by reducing residue Cys-291. Cysteine-scanning mutagenesis of TM8 showed DTT activation in the single-cysteine mutants S287C, G294C, and S298C, lining the same α-helical face. S-Thiolation in Escherichia coli cells resulted in complete inactivation of the single-cysteine mutant G294C. l-Serine blocked DTT activation with an EC50 similar to the apparent KM of this mutant. Thus, S-thiolation abolished substrate translocation but not substrate binding. Mutation of Lys-295, to Cys (K295C) broadened the profile of inhibitors and the spectrum of substrates with the exception of imino acids. A structural model of SteT based on the structural homologue AdiC (arginine/agmatine antiporter) positions residues Cys-291 and Lys-295 in the putative substrate binding pocket. All this suggests that Lys-295 is a main determinant in the recognition of the side chain of SteT substrates. In contrast, Gly-294 is not facing the surface, suggesting conformational changes involving TM8 during the transport cycle. Our results suggest that TM8 sculpts the substrate-binding site and undergoes conformational changes during the transport cycle of SteT.  相似文献   

5.
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3 ? null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.  相似文献   

6.
Nitrate reductase of Neurospora crassa is a complex multi-redox protein composed of two identical subunits, each of which contains three distinct domains, an amino-terminal domain that contains a molybdopterin cofactor, a central heme-containing domain, and a carboxy-terminal domain which binds a flavin and a pyridine nucleotide cofactor. The flavin domain of nitrate reductase appears to have structural and functional similarity to ferredoxin NADPH reductase (FNR). Using the crystal structure of FNR and amino acid identities in numerous nitrate reductases as guides, site-directed mutagenesis was used to replace specific amino acids suspected to be involved in the binding of the flavin or pyridine nucleotide cofactors and thus important for the catalytic function of the flavin domain. Each mutant flavin domain protein was expressed in Escherichia coli and analyzed for NADPH: ferricyanide reductase activity. The effect of each amino acid substitution upon the activity of the complete nitrate reductase reaction was also examined by transforming each manipulated gene into a nit-3 null mutant of N. crassa. Our results identify amino acid residues which are critical for function of the flavin domain of nitrate reductase and appear to be important for the binding of the flavin or the pyridine nucleotide cofactors.  相似文献   

7.
Using the technique of UV-mediated cross-linking of nucleotides to their acceptor sites (Modak, M. J., and Gillerman-Cox, E. (1982) J. Biol. Chem. 257, 15105-15109), we have labeled calf terminal deoxynucleotidyltransferase (TdT) with [32P]dTTP. The specificity of dTTP cross-linking at the substrate binding site in TdT is demonstrated by the competitive inhibition of the cross-linking reaction by other deoxynucleoside triphosphates, and ATP and its analogues, requiring concentrations consistent with their kinetic constants. Tryptic peptide mapping of the [32P]dTTP-labeled enzyme showed the presence of a single radioactive peptide fraction that contained the site of dTTP cross-linking. The amino acid composition and sequence analysis of the radioactive peptide fraction revealed it to contain two tryptic peptides, spanning residues 221-231 and 234-249. Since these two peptides were covalently linked to dTTP, the region encompassed by them constitutes a substrate binding domain in TdT. Further proteolytic digestion of the tryptic peptide-dTTP complex, using V8 protease, yielded a smaller peptide, and its analysis narrowed the substrate binding domain to 14 amino acids corresponding to residues 224-237 in the primary amino acid sequence of TdT. Furthermore, 2 cysteine residues, Cys-227 and Cys-234, within this domain were found to be involved in the cross-linking of dTTP, suggesting their participation in the process of substrate binding in TdT.  相似文献   

8.
Li M  Binda C  Mattevi A  Edmondson DE 《Biochemistry》2006,45(15):4775-4784
Current structural results of several flavin-dependent amine oxidizing enzymes including human monoamine oxidases A and B (MAO A and MAO B) show aromatic amino acid residues oriented approximately perpendicular to the flavin ring, suggesting a functional role in catalysis. In the case of human MAO B, two tyrosyl residues (Y398 and Y435) are found in the substrate binding site on the re face of the covalent flavin ring [Binda et al. (2002) J. Biol. Chem. 277, 23973-23976]. To probe the functional significance of this structure, Tyr435 in MAO B was mutated with the amino acids Phe, His, Leu, or Trp, the mutant proteins expressed in Pichia pastoris, and purified to homogeneity. Each mutant protein contains covalent FAD and exhibits a high level of catalytic functionality. No major alterations in active site structures are detected on comparison of their respective crystal structures with that of WT enzyme. The relative k(cat)/K(m) values for each mutant enzyme show Y435 > Y435F = Y435L = Y435H > Y435W. A similar behavior is also observed with the membrane-bound forms of MAO A and MAO B (MAO A Y444 mutant enzymes are found to be unstable on membrane extraction). p-Nitrobenzylamine is found to be a poor substrate while p-nitrophenethylamine is found to be a good substrate for all WT and mutant forms of MAO B. Analysis of these kinetic and structural data suggests the function of the "aromatic cage" in MAO to include a steric role in substrate binding and access to the flavin coenzyme and to increase the nucleophilicity of the substrate amine moiety. These results are consistent with a proposed polar nucleophilic mechanism for catalytic amine oxidation.  相似文献   

9.
To define domains involved in IGF binding 60 N-terminal amino acid residues of IGFBP-1 were deleted. This deletion resulted in loss of IGF binding suggesting that the N-terminus may enclose an IGF binding domain. However, most point mutations introduced in this region did not affect IGF binding. In contrast to Cys-34, only substitution of Cys-38 for a tyrosine residue abolished IGF binding. With the determination that all 18 cysteine residues are involved in disulphide bond formation our data suggest that, although not all cysteines contribute to the same extent, the ligand binding site may be spatially organized.  相似文献   

10.
In the acylation reaction of serine proteases the effect of amino acid residues on the geometrical change of the catalytic site from Michaelis to tetrahedral state was studied by using ab initio molecular orbital calculations. Amino acid residues in the catalytic site and the peptide substrate were calculated as a quantum mechanical region, and all the other amino acid residues and the calcium ion were included in the calculation as the electrostatic effects. The effects of Asp102, Asp194, N-terminus and the oxyanion binding site are large. The oxyanion binding site directly stabilizes the tetrahedral substrate. Asp102 stabilizes the enzyme intermediate, interacting with the protonated His57 residue. In order to elucidate the roles of Asp102 and the oxyanion binding site, energy decomposition analyses were done for the intermolecular interactions. The contribution of Asp102 and the oxyanion binding site to the decrease of energy in the geometrical change is due to the electrostatic effect. The energies of the proton shuttle from Ser195 Oγ to the leaving group of the substrate were calculated for amide and ester substrate models.  相似文献   

11.
The mechanisms underlying the transport of bile acids by apical sodium-dependent bile acid transporter (Asbt) are not well defined. To further identify the functionally relevant residues, thirteen conserved negatively (Asp and Glu) and positively (Lys and Arg) charged residues plus Cys-270 of rat Asbt were replaced with Ala or Gln by site-directed mutagenesis. Seven of the fourteen residues of rat Asbt were identified as functionally important by taurocholate transport studies, substrate inhibition assays, confocal microscopy, and electrophysiological methods. The results showed that Asp-122, Lys-191, Lys-225, Lys-256, Glu-261, and Lys-312,Lys-313 residues of rat Asbt are critical for transport function and may determine substrate specificity. Arg-64 may be located at a different binding site to assist in interaction with non-bile acid organic anions. For bile acid transport by Asbt, Na(+) ion movement is a voltage-dependent process that tightly companied with taurocholate movement. Asp-122 and Glu-261 play a critical role in the interaction of a Na(+) ion and ligand with Asbt. Cys-270 is not essential for the transport process. These studies provide new details about the amino acid residues of Asbt involved in binding and transport of bile acids and Na(+).  相似文献   

12.
The role of cysteine residues for structure and function of formaldehyde dehydrogenase from Pseudomonas putida was analysed by amino acid sequence comparison, homology-based structure modeling, site-directed mutagenesis, and chemical modification. Five out of seven cysteine residues found in the enzyme were concluded to coordinate with an active site zinc (Cys-46) and structural zinc atoms (Cys-97, -100, -103, and -111) from the sequence comparison with other Zn-containing medium-chain alcohol dehydrogenase homologues. The three-dimensional structure model based on the known structure of the horse liver E-type alcohol dehydrogenase (ADH) indicated that Cys-257 is located very far from the active site Zn and NAD+ binding region, suggesting that Cys-257 does not participate in the enzyme reaction. The structure also suggested that Cys-166 does not coordinate to active site Zn, but Asp-169 functions as a Zn-ligand, instead.  相似文献   

13.
The objective of this study was to identify the role of individual amino acid residues in determining the substrate specificity of the yeast mitochondrial citrate transport protein (CTP). Previously, we showed that the CTP contains at least two substrate-binding sites. In this study, utilizing the overexpressed, single-Cys CTP-binding site variants that were functionally reconstituted in liposomes, we examined CTP specificity from both its external and internal surfaces. Upon mutation of residues comprising the more external site, the CTP becomes less selective for citrate with numerous external anions able to effectively inhibit [14C]citrate/citrate exchange. Thus, the site 1 variants assume the binding characteristics of a nonspecific anion carrier. Comparison of [14C]citrate uptake in the presence of various internal anions versus water revealed that, with the exception of the R189C mutant, the other site 1 variants showed substantial uniport activity relative to exchange. Upon mutation of residues comprising site 2, we observed two types of effects. The K37C mutant displayed a markedly enhanced selectivity for external citrate. In contrast, the other site 2 mutants displayed varying degrees of relaxed selectivity for external citrate. Examination of internal substrates revealed that, in contrast to the control transporter, the R181C variant exclusively functioned as a uniporter. This study provides the first functional information on the role of specific binding site residues in determining mitochondrial transporter substrate selectivity. We interpret our findings in the context of our homology-modeled CTP as it cycles between the outward-facing, occluded, and inward-facing states.  相似文献   

14.

Background

The diterpene cyclase ent-copalyl diphosphate synthase (CPS) catalyzes the first committed step in the biosynthesis of gibberellins. The previously reported 2.25 Å resolution crystal structure of CPS complexed with (S)-15-aza-14,15-dihydrogeranylgeranyl thiolodiphosphate (1) established the αβγ domain architecture, but ambiguities regarding substrate analog binding remained.

Method

Use of crystallization additives yielded CPS crystals diffracting to 1.55 Å resolution. Additionally, active site residues that hydrogen bond with D379, either directly or through hydrogen bonded water molecules, were probed by mutagenesis.

Results

This work clarifies structure–function relationships that were ambiguous in the lower resolution structure. Well-defined positions for the diphosphate group and tertiary ammonium cation of 1, as well as extensive solvent structure, are observed.

Conclusions

Two channels involving hydrogen bonded solvent and protein residues lead to the active site, forming hydrogen bonded “proton wires” that link general acid D379 with bulk solvent. These proton wires may facilitate proton transfer with the general acid during catalysis. Activity measurements made with mutant enzymes indicate that N425, which donates a hydrogen bond directly to D379, and T421, which hydrogen bonds with D379 through an intervening solvent molecule, help orient D379 for catalysis. Residues involved in hydrogen bonds with the proton wire, R340 and D503, are also important. Finally, conserved residue E211, which is located near the diphosphate group of 1, is proposed to be a ligand to Mg2 + required for optimal catalytic activity.

General significance

This work establishes structure–function relationships for class II terpenoid cyclases.  相似文献   

15.
In order to enlarge the substrate binding pocket of the meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum to accommodate larger 2-keto acids, four amino acid residues (Phe146, Thr171, Arg181, and His227) were targeted for site saturation mutagenesis. Among all mutants, the single mutant H227V had a specific activity of 2.39 ± 0.06 U · mg−1, which was 35.1-fold enhancement over the wild-type enzyme.  相似文献   

16.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   

17.
The crystal structure of the tissue-type transglutaminase from red sea bream liver (fish-derived transglutaminase, FTG) has been determined at 2.5-A resolution using the molecular replacement method, based on the crystal structure of human blood coagulation factor XIII, which is a transglutaminase zymogen. The model contains 666 residues of a total of 695 residues, 382 water molecules, and 1 sulfate ion. FTG consists of four domains, and its overall and active site structures are similar to those of human factor XIII. However, significant structural differences are observed in both the acyl donor and acyl acceptor binding sites, which account for the difference in substrate preferences. The active site of the enzyme is inaccessible to the solvent, because the catalytic Cys-272 hydrogen-bonds to Tyr-515, which is thought to be displaced upon acyl donor binding to FTG. It is postulated that the binding of an inappropriate substrate to FTG would lead to inactivation of the enzyme because of the formation of a new disulfide bridge between Cys-272 and the adjacent Cys-333 immediately after the displacement of Tyr-515. Considering the mutational studies previously reported on the tissue-type transglutaminases, we propose that Cys-333 and Tyr-515 are important in strictly controlling the enzymatic activity of FTG.  相似文献   

18.
Free reduced flavins are involved in a variety of biological functions. They are generated from NAD(P)H by flavin reductase via co-factor flavin bound to the enzyme. Although recent findings on the structure and function of flavin reductase provide new information about co-factor FAD and substrate NAD, there have been no reports on the substrate flavin binding site. Here we report the structure of TTHA0420 from Thermus thermophilus HB8, which belongs to flavin reductase, and describe the dual binding mode of the substrate and co-factor flavins. We also report that TTHA0420 has not only the flavin reductase motif GDH but also a specific motif YGG in C terminus as well as Phe-41 and Arg-11, which are conserved in its subclass. From the structure, these motifs are important for the substrate flavin binding. On the contrary, the C terminus is stacked on the NADH binding site, apparently to block NADH binding to the active site. To identify the function of the C-terminal region, we designed and expressed a mutant TTHA0420 enzyme in which the C-terminal five residues were deleted (TTHA0420-ΔC5). Notably, the activity of TTHA0420-ΔC5 was about 10 times higher than that of the wild-type enzyme at 20-40 °C. Our findings suggest that the C-terminal region of TTHA0420 may regulate the alternative binding of NADH and substrate flavin to the enzyme.  相似文献   

19.
This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein–ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2–3 fold and 6–7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.  相似文献   

20.
The active site of spinach glycolate oxidase   总被引:10,自引:0,他引:10  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号