首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild Pacific salmon populations are in serious decline, and as a result, a number of salmon stocks are listed as threatened or endangered under the Endangered Species Act. Our research identifies and supports the possibility that certain environmental contaminants can alter salmon survival, and as a result may contribute to these species being at risk. We have shown that juvenile chinook salmon (Oncorhynchus tshawytscha) are exposed to polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) as they migrate through a contaminated urban estuary in Puget Sound WA (the Duwamish Waterway estuary). Immune function was analyzed in these fish by examining the ability of their anterior kidney and splenic leukocytes to produce a primary and secondary in vitro plaque-forming cell (PFC) response to the hapten, trinitrophenyl (TNP), and by determining their susceptibility to a marine pathogen, Vibrio anguillarum. We found that fish outmigrating from the urban estuary produced a significantly lower PFC response to TNP and were more susceptible to the pathogen, compared to juvenile salmon collected from a rural estuary during their outmigration. In the laboratory, we exposed juvenile chinook salmon collected from a hatchery to either a PCB technical mixture or a PAH compound to determine if these contaminants have the potential to alter immune function in salmon. Indeed, we found that salmon exposed in the laboratory to either the PCB mixture or the PAH also produced lower PFC responses and were more susceptible to disease compared to animals treated with the solvent vehicle. In summary, contaminants such as PAHs and PCBs are demonstrated to influence salmon health, and thus have the potential to adversely impact salmon populations.  相似文献   

2.
The diel feeding periodicity, daily ration and prey selection of juvenile chinook salmon, Oncorhynchus tshawytscha , were studied in relation to the available prey. Maximum dry weight of food intake occurred about dawn, when mayflies were the major prey, but the greatest number of freshly eaten prey occurred during the afternoon, when chironomids and terrestrial dipterans predominated. Feeding activity at night was low, with smaller mayflies comprising up to 50% of the prey. During the day the young salmon fed selectively on chironomids and the larger mayflies, while trichopterans and terrestrial taxa were under-represented in the diet. Food consumption over the 24-h period averaged 8.3% of the fish dry body weight. Prey abundance in the drift explained about 50% of the composition of the diet. Although the fish selected larger mayflies, size apparently was not a main criterion for selection because chironomids, although smaller than mayflies, were also frequently eaten. Previous dietary experience of the fish and the diel pattern of prey abundance appear to best explain the selective feeding of juvenile chinook salmon.  相似文献   

3.
Nearly all saltmarshes in east-central, Florida were impounded for mosquito control during the 1960s. The majority of these marshes have since been reconnected to the estuary by culverts, providing an opportunity to effectively measure exchange of aquatic organisms. A multi-gear approach was used monthly to simultaneously estimate fish standing stock (cast net), fish exchange with the estuary (culvert traps), and piscivore abundance (gill nets and bird counts) to document patterns of fish use in a reconnected saltmarsh impoundment. Changes in saltmarsh fish abundance, and exchange of fish with the estuary reflected the seasonal pattern of marsh flooding in the northern Indian River Lagoon system. During a 6-month period of marsh flooding, resident fish had continuous access to the marsh surface. Large piscivorous fish regularly entered the impoundment via creeks and ditches to prey upon small resident fish, and piscivorous birds aggregated following major fish movements to the marsh surface or to deep habitats. As water levels receded in winter, saltmarsh fish concentrated into deep habitats and emigration to the estuary ensued (200% greater biomass left the impoundment than entered). Fish abundance and community structure along the estuary shoreline (although fringed with marsh vegetation) were not analogous to marsh creeks and ditches. Perimeter ditches provided deep-water habitat for large estuarine predators, and shallow creeks served as an alternative habitat for resident fish when the marsh surface was dry. Use of the impoundment as nursery by transients was limited to Mugil cephalus Linnaeus, but large juvenile and adult piscivorous fish used the impoundment for feeding. In conclusion, the saltmarsh impoundment was a feeding site for piscivorous fish and birds, and functioned as a net exporter of forage fish to adjacent estuarine waters.  相似文献   

4.
All anadromous fishes, including juvenile salmon, encounter estuarine habitats as they transition from riverine to marine environments. We compare the estuarine use between juvenile Atlantic salmon (Salmo salar) in the Penobscot River estuary and Pacific salmon (Oncorhynchus spp.) in the Columbia River estuary. Both estuaries have been degraded by anthropogenic activities. Atlantic and Pacific salmon populations in both basins rely heavily on hatchery inputs for persistence. Pacific salmon, as a group, represent a continuum of estuarine use, from species that move through rapidly to those that make extensive use of estuarine habitats. While Atlantic salmon estuarine use is predominantly similar to rapidly moving Pacific salmon, they can exhibit nearly the entire range of Pacific salmon estuarine use. Both slow and rapidly migrating Atlantic and Pacific salmon actively feed in estuarine environments, consuming insect and invertebrate prey. Interactions between juvenile salmon and estuarine fish communities are poorly understood in both estuaries, although they experience similar avian and marine mammal predators. Estuaries are clearly important for Atlantic and Pacific salmon, yet our understanding of this use is currently insufficient to make informed judgments about habitat quality or overall estuary health. This review of salmonid migration through and residency within estuaries identifies actions that could hasten restoration of both Atlantic and Pacific salmon populations.  相似文献   

5.
Birtwell  Ian K.  Kruzynski  George M. 《Hydrobiologia》1989,188(1):543-560
Juvenile Pacific salmon display a marked surface water orientation during downstream migration, estuarine and nearshore coastal rearing phases. Many estuaries in British Columbia are vertically stratified with a shallow, well-defined halocline which can restrict the dispersion of wastes discharged into less saline surface waters and impose constraints upon aquatic organisms. In situ experiments in an estuary receiving a surface discharge of treated pulp mill wastes, revealed conditions which were lethal to underyearling salmon at, and below the halocline (4.0–6.5 m depth). Behavioural bioassays determined that juvenile chinook salmon were biased towards the water surface and avoided waters at depth. Dissolved oxygen was the variable which affected this distribution most significantly. Surface waters receiving effluent from another pulp mill were lethal to juvenile salmon within 350 m, and a significant vertical avoidance response occurred within 350–950 m of the outfalls. The behavioural response was significantly correlated with in situ temperature, pH and colour (effluent).As a complement to field experiments we developed a 4500 l water column simulator (WCS) to examine salmon behaviour in the laboratory. We investigated the surface water orientation behaviour of juvenile salmon in relation to variations in salinity and dissolved oxygen. Under simulated vertically stratified estuarine conditions, the fish moved freely between overlying fresh water and salt water. Induction of hypoxic conditions in fresh water elicited a downward distribution shift towards the halocline and oxygenated, but more saline, waters. Avoidance reactions (50% level) occurred consistently up to 7–8 mg · l–1 dissolved oxygen. Salmon continued to examine the hypoxic freshwater zone despite sub-optimal conditions.  相似文献   

6.
On the west coast of Vancouver Island, Canada, in the Treaty Settlement Lands of the Huu‐ay‐aht First Nation, a causeway isolating the southern portion of the Sarita River estuary was breached in 2018 to enhance juvenile salmon and tidal water access into the southern portion of the estuary. Short‐term goals of breaching were to: (1) enhance juvenile salmon access through the causeway; (2) promote colonization of Chinook and Chum Salmon in pools, while retaining Coho Salmon; (3) monitor the entire estuary fish community, including non‐salmonids, to assess breaching success; and (4) homogenize water chemistry in pool and channel ecosystems currently fragmented by the causeway. Immediately following the breach, both fish community and water chemistry measurements indicate that these goals were achieved. Chinook and Chum Salmon utilization increased inside and outside of the causeway following breaching. Similarly, Chinook and Chum salmon were observed in pool ecosystems, and Coho Salmon were also retained in pools following breaching. Water chemistry was homogenized post‐breach, primarily due to increased saltwater penetration. While continued monitoring is required, short‐term indicators suggest that breaching was effective in increasing connectivity of the Sarita Estuary, allowing access to 1.4 km2 of habitat that had previously been inaccessible to juvenile salmon.  相似文献   

7.
Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.  相似文献   

8.
The Duwamish estuary is an industrialized waterway located in Seattle, WA, USA. Despite a history of habitat loss, naturally produced juvenile Chinook salmon use the estuary. In addition to experiencing degraded habitat in the estuary, wild salmon growth may be affected by competition with more than three million hatchery fish released yearly into the river. Restoring habitat to benefit salmon in the Duwamish River is a priority for trustees of public resources, and a number of wetland restoration sites have been created there. We tested the function of restored sites in the Duwamish estuary for juvenile Chinook salmon by comparing fish densities from enclosure nets or beach seines at three paired restored/un-restored sites and by applying environmental and diet data to a bioenergetics model. We also examined temporal and diet overlap of wild juvenile Chinook salmon with other salmon species and with hatchery-reared Chinook salmon using non-metric multidimensional scaling (NMDS). At a brackish upstream site with a relatively large opening to the river, we found higher densities of juvenile Chinook salmon at the restored site. NMDS results indicated that juvenile Chinook salmon fed on different taxa at the restored sites than at the reference sites. However, modeled growth was similar at restored and reference sites. Co-occurring juvenile chum and Chinook salmon fed differently, with chum eating smaller prey, and Chinook salmon eating larger prey. Co-occurring hatchery and wild juvenile Chinook salmon had similar diets, indicating that they may compete for prey. However, modeled growth was positive and did not differ between hatchery and wild fish, suggesting that food was not limiting. Bioenergetics models indicated that overall juvenile Chinook salmon growth potential at the brackish water site was consistently higher than at more saline sites. Our results suggest that restoration sites in the Duwamish estuary that have larger access openings and are located in brackish water may have increased function over other configurations.  相似文献   

9.
Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that use the estuary, then numerous fisheries would also be negatively affected.  相似文献   

10.
Phytophagous insects of estuarine tidal marshes which live inside their host plants, are, in contrast to the plants, not directly exposed to the estuarine salinity gradient. Previous field studies, however, have shown that patterns of growth and development ofAgapanthia villosoviridescens larvae, stem-borers of the halophyteAster tripolium, gradually change on tidal marshes along the Westerschelde estuary (HEMMINGA and VAN SOELEN, 1988). In the present study we carried out a laboratory experiment in which we followed growth ofA. villosoviridescens larvae from two different Westerschelde tidal marshes; the larvae either were kept inA. tripolium stems from their own marsh, or they were kept in stems from the other marsh. It was found that larvae from both tidal marshes showed larger weight increases inA. tripolium stems from the least saline marsh. Apparently, differences in host plant quality between stems of the two marshes exist. The results lend support to the hypothesis that growth and development, and distribution and abundance of phytophagous insects in estuarine tidal marshes may be indirectly influenced by estuarine gradients,via the host plant quality which changes along the estuary.  相似文献   

11.
Because of land reclamation, reinforcement of dikes, and the deepening of shipping channels, large areas of tidal marshes have been removed or eroded from the Scheldt estuary during the last two centuries. Tidal wetland restoration contributes toward compensating this loss of habitat. Not all restoration projects are meticulously planned, however; some are forced by nature. During a severe storm in 1990, a dike was breached in the brackish part of the Scheldt estuary and returned tidal influence to the Sieperda polder. In the 10 years since the dike breach, the former polder has changed into a brackish tidal marsh. Here we report on the geomorphologic and ecological developments that have taken place in the marsh. Tidal intrusion into the former polder turned crop fields into mudflats and changed pastures into salty marsh vegetation. The digging of a new creek improved marsh hydrology and enhanced tidal intrusion further into the marsh. Macrofauna typical of estuarine mudflats established rapidly in the developing marsh. Vegetation succession took place rapidly. Within 5 years, large areas of mudflats became covered with marsh vegetation. Birds characteristic of salt marshes were observed breeding or seen foraging in the marsh. The number of wading birds declined as areas of mudflat became overgrown. It is demonstrated that tidal flow is the engine to tidal marsh restoration. Tidal influence caused geomorphologic changes, which directed ecological developments in the former polder.  相似文献   

12.
13.
The population dynamics of chinook salmon (Oncorhynchus tshawytscha) from the Cowichan River on Vancouver Island, British Columbia, Canada are used by the Pacific Salmon Commission as an index of the general state of chinook salmon coast wide. In recent years the production declined to very low levels despite the use of a hatchery that was intended to increase production by improving the number of smolts entering the ocean. In 2008, we carried out an extensive study of the early marine survival of the hatchery and wild juvenile chinook salmon. We found that both rearing types mostly remained within the Gulf Islands study area during the period when most of the marine mortality occurred for the hatchery fish. By mid September, approximately 1.3% of all hatchery fish survived, compared to 7.8%–31.5% for wild fish. This six to 24 times difference in survival could negate an estimated increased egg-to-smolt survival of about 13% that is theorized to result through the use of a hatchery. Estimates of the early marine survival are approximate, but sufficient to show a dramatic difference in the response of the two rearing types to the marine nursery area. If the declining trend in production continues for both rearing types, modifications to the hatchery program are needed to improve survival or an emphasis on improving the abundances of wild stocks is necessary, or both. The discovery that the juvenile Cowichan River chinook salmon remain within a relatively confined area of the Gulf Islands within the Strait of Georgia offers an excellent opportunity to research the mechanisms that cause the early marine mortalities and hopefully contribute to a management that improves the production.  相似文献   

14.
Salt marshes and shallow-water macroalgal beds are known to provide nursery habitat for many species of fish and invertebrates. The role of these habitats as refuge from predation is well established, but the degree to which indigenous primary production within the nursery provides food for growth and development of estuarine species remains unresolved. In this study, we tested the hypothesis that juvenile blue crabs depend on indigenous primary production, directly or indirectly, during their entire stay within the nursery. To test this hypothesis, we conducted isotopic studies and stomach content analyses of juveniles from habitats near the mouth of Delaware Bay and from an adjacent lagoonal estuary (ca. 39.5° N, 75.1° W). Primary producers, marsh detritus, various life-history stages of blue crabs and potential prey species were sampled in the main estuary and in an adjacent marsh during the summer and early fall of two consecutive years. Newly settled juveniles (<15 mm carapace width) from the marsh were about 1.8‰ lighter in carbon (−17.2‰) relative to larger juveniles from the marsh (15–30 mm carapace width) and appeared to have retained a carbon isotopic signature indicative of the phytoplankton-based food web associated with larval stages. However, the signature of juveniles changed as a function of size. Large juveniles and crabs >60 mm were enriched in δ13C (−14.7 ± 0.1‰) compared to small crabs, suggesting a gradual shift in diet from a planktonic to a detritus-based food web with increasing size. As with crabs from Delaware Bay, the δ13C signature of juvenile crabs sampled from macroalgal beds in the lagoonal estuary (Rehoboth Bay) changed as a function of size. Also, δ13C ratios of crabs varied among the various species of macroalgae. The δ15N composition of primary producers in the marsh and main estuary also was reflected in the δ15N values of crabs and other benthic consumers in the respective habitats. Results of stomach-content analysis in this study were consistent with isotope data. Observed changes in prey preferences were related to changes in size of juvenile crabs and also differed among habitats. Gut content analyses of the three size classes of juveniles in macroalgal beds from Rehoboth Bay indicated that the crabs depend heavily on various amphipod species that occur on the seaweeds. These amphipods graze directly on the macroalgae and are among the most abundant invertebrates in the macroalgal beds. This implies a direct trophic relationship between the juvenile crabs and the macroalgae. In summary, our study provides strong evidence that the value of nursery areas such as salt marshes and macroalgal beds goes beyond that of providing refuge from predation, and that species using these nurseries (e.g. juvenile blue crabs) are ultimately dependent on primary production originating in benthic plants indigenous to the nursery.  相似文献   

15.
The diet of juvenile chinook salmon and the foods available to them were studied during spring and summer in a large, braided, New Zealand river. During both sampling periods fish and potential prey were collected at dawn and dusk. Analysis showed that in spring the feeding rate increased at dawn, when aquatic taxa comprised the majority of their prey. Prey of terrestrial origin dominated the diet at dusk in summer but formed only about 1% of the diet during spring, when few such prey were available.
During spring the fish selectively preyed upon larger nymphs of the mayflies Deleatidium spp. However, in summer chironomids, other dipterans, and trichopterans were consumed to the exclusion of Deleatidium . Most of the chironomids and trichopterans taken were pupae or emerging adults and it is suggested that this may reflect differences in vulnerability during the diurnal emergence period.  相似文献   

16.
Salt Marsh Restoration in Connecticut: 20 Years of Science and Management   总被引:4,自引:0,他引:4  
In 1980 the State of Connecticut began a tidal marsh restoration program targeting systems degraded by tidal restrictions and impoundments. Such marshes become dominated by common reed grass (Phragmites australis) and cattail (Typha angustifolia and T. latifolia), with little ecological connection to Long Island Sound. The management and scientific hypothesis was that returning tidal action, reconnecting marshes to Long Island Sound, would set these systems on a recovery trajectory. Specific restoration targets (i.e., pre‐disturbance conditions or particular reference marshes) were considered unrealistic. However, it was expected that with time restored tides would return ecological functions and attributes characteristic of fully functioning tidal salt marshes. Here we report results of this program at nine separate sites within six marsh systems along 110 km of Long Island Sound shoreline, with restoration times of 5 to 21 years. Biotic parameters assessed include vegetation, macroinvertebrates, and use by fish and birds. Abiotic factors studied were soil salinity, elevation and tidal flooding, and soil water table depth. Sites fell into two categories of vegetation recovery: slow, ca. 0.5%, or fast, more than 5% of total area per year. Although total cover and frequency of salt marsh angiosperms was positively related to soil salinity, and reed grass stand parameters negatively so, fast versus slow recovery rates could not be attributed to salinity. Instead, rates appear to reflect differences in tidal flooding. Rapid recovery was characterized by lower elevations, greater hydroperiods, and higher soil water tables. Recovery of other biotic attributes and functions does not necessarily parallel those for vegetation. At the longest studied system (rapid vegetation recovery) the high marsh snail Melampus bidentatus took two decades to reach densities comparable with a nearby reference marsh, whereas the amphipod Orchestia grillus was well established on a slow‐recovery marsh, reed grass dominated after 9 years. Typical fish species assemblages were found in restoration site creeks and ditches within 5 years. Gut contents of fish in ditches and on the high marsh suggest that use of restored marsh as foraging areas may require up to 15 years to reach equivalence with reference sites. Bird species that specialize in salt marshes require appropriate vegetation; on the oldest restoration site, breeding populations comparable with reference marshland had become established after 15 years. Use of restoration sites by birds considered marsh generalists was initially high and was still nearly twice that of reference areas even after 20 years. Herons, egrets, and migratory shorebirds used restoration areas extensively. These results support our prediction that returning tides will set degraded marshes on trajectories that can bring essentially full restoration of ecological functions. This can occur within two decades, although reduced tidal action can delay restoration of some functions. With this success, Connecticut's Department of Environmental Protection established a dedicated Wetland Restoration Unit. As of 1999 tides have been restored at 57 separate sites along the Connecticut coast.  相似文献   

17.
Synopsis Juvenile salmonids,Oncorhynchus spp., commonly encounter conditions (e.g., during hatchery release and dam passage) that result in damage to the skin, scale, and slime complex. We conducted laboratory experiments to determine if descaling of juvenile chinook salmon,O. tshawytscha, increased their vulnerability to predation, and to assess the physiological stress responses elicited by descaling. Salmon were experimentally descaled on either 10% or 20% of their total body area. When offered equal numbers of control and descaled juvenile chinook salmon, northern squawfish,Ptychocheilus oregonensis, did not consume significantly more of either prey type (48–60% of consumed prey were descaled). Juvenile chinook salmon descaled on 10% of their body area did show significant physiological stress responses, however. Mean concentrations of plasma cortisol peaked 1 h after descaling, and returned to control levels by 12 h. Plasma glucose peaked 3 h post-treatment and remained elevated for 24 h. Plasma lactate increased immediately following treatment and returned to undisturbed control levels by 3 h. The osmoregulatory response of plasma potassium was highly variable, but plasma sodium decreased immediately and remained low for 24 h. The observed physiological responses suggest that descaling of juvenile chinook salmon could result in decreased resistance to disease and other stressors encountered in the field, possibly leading to reduced performance capacity and lowered survival.  相似文献   

18.
Green BC  Smith DJ  Grey J  Underwood GJ 《Oecologia》2012,168(1):245-255
Adult and juvenile fish utilise salt marshes for food and shelter at high tide, moving into adjacent sublittoral regions during low tide. Understanding whether there are high levels of site fidelity for different species of coastal fish has important implications for habitat conservation and the design of marine protected areas. We hypothesised that common salt marsh fish species would demonstrate a high site fidelity, resulting in minimal inter-marsh connectivity. Carbon (13C) and nitrogen (15N) stable isotope ratios of larvae and juveniles of five common salt marsh fish (Atherina presbyter, Chelon labrosus, Clupea harengus, Dicentrarchus labrax, Pomatoschistus microps), seven types of primary producer and seven secondary consumer food sources were sampled in five salt marshes within two estuary complexes along the coast of south-east England. Significant differences in 13C and 15N signatures between salt marshes indicated distinct sub-populations utilising the area of estuary around each salt marsh, and limited connectivity, even within the same estuary complex. 15N ratios were responsible for the majority of inter-marsh differences for each species and showed similar site-specific patterns in ratios in primary producers, secondary consumers and fish. Fish diets (derived from isotope mixing models) varied between species but were mostly consistent between marsh sites, indicating that dietary shifts were not the source of variability of the inter-marsh isotopic signatures within species. These results demonstrate that for some common coastal fish species, high levels of site fidelity result in individual salt marshes operating as discrete habitats for fish assemblages.  相似文献   

19.
Synopsis Stomach contents of juvenile coho,Oncorhynchus kisutch, and chinook,O. tshawytscha, salmon collected in purse seines off the coast of Washington and Oregon were examined for variations related to predator size. There was a general trend toward increasing consumption of fish with increasing body size, due mainly to the increase in northern anchovy biomass consumed by the larger salmon. Most of the major prey taxa showed significant differences among the size classes examined for both salmon species. There was a direct relationship between predator and prey size for both coho and chinook, but considerable variation was found in prey length consumed within each size class. Prey width did not provide as good a fit as prey length for either species. In general, coho consumed larger fish prey in relation to their body length than chinook but there were substantial differences by month or year of collection.  相似文献   

20.
In the Westerschelde estuary, salt marshes are present as isolated patches fringing the estuary. In the present paper tidal transport of stem-boring larvae of Agapanthia villosoviridescens (Coleoptera) from salt marshes of the upper reaches of the Westerschelde estuary to marshes of the lower reaches is demonstrated. The evidence for the origin of the larvae is based on comparisons of growth and development characteristics of larvae found in flood debris belts and resident larval populations. These characteristics are different on the various salt marshes along the Westerschelde, probably as a result of estuarine gradients. Additional evidence for the larval origin comes from the plant composition of the flood debris. The occurrence of upward tidal transport is discussed. Considering the comparatively large area of salt marshes in the upper estuary, tidal dispersal of larvae probably will be dominated by transport in seaward direction. So far, very little is known on the role of tidal currents with regard to the exchange between salt marsh populations. The present results suggest that tidal transport may not only be important for dispersal of aquatic organisms in an estuary, but also for organisms inhabiting the semi-terrestrial estuarine salt marshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号