首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated 27 prairie grass species thought to be among those dominant 200 yr ago in the northern midwest as larval hosts of the northern corn rootworm, Diabrotica barberi Smith and Lawrence. Maize (Zea mays L.), spring wheat (Triticum aestivum L.), and grain sorghum (Sorghum bicolor L.) were included as controls for a total of 30 species. Twenty pots of each species were planted in a randomized complete block design. Each pot was infested 5 wk later with 20 neonate northern corn rootworm larvae. Two pots within each species and block were assigned an extraction date of 7 or 14 d after infestation. The remaining two pots from each block were used to monitor adult emergence. The percentage of larvae recovered, change in larval head capsule width, and change in average dry weights varied significantly among the grass species. The highest percentage of larvae was recovered from slender wheatgrass, Elymus trachycaulus (Link), and this was significantly greater than the percentage recovered from all other species including maize for the 14-d sample date. Several additional species were also relatively good hosts, in that the percentage of larvae recovered from these species was not significantly different from maize. The average dry weight of larvae recovered was significantly greater for larvae recovered from maize than for larvae recovered from all other species except slender wheatgrass, when the two samples dates were combined. Overall, adults were produced from only 6 of the 28 species evaluated, and no analysis was performed because of the low numbers. The results of this study are discussed in relation to the potential of alternate hosts of northern corn rootworm to serve as a bridge to survival on transgenic maize.  相似文献   

2.
Western corn rootworm, Diabrotica virgifera virgifera LeConte, and northern corn rootworm, D. barberi Smith and Lawrence, are sympatric species and serious pests of corn cultivation in North America. Comparison of nucleotide sequence of mitochondrial cytochrome oxidase I and II was used to design polymerase chain reaction (PCR) primers that discriminate immature stages of the two species based on differences in amplicon size. Multiplex PCR can be used to give a positive test for each species in a single amplification reaction. This provides a method to identify field caught larvae and facilitates investigations of larval interaction and competition between the species.  相似文献   

3.
Studies were conducted in Kansas corn and soybean fields during 1997 to compare various sampling methods, traps, and trap components for capturing three species of adult corn rootworms: western (Diabrotica virgifera virgifera Leconte), southern (D. undecimpunctata howardi Barber), and northern (D. barberi Smith & Lawrence). Lure constituents affected the species of beetle attracted to the trap. Traps with a lure containing 4-methoxycinnamaldehyde attracted more western corn rootworms, those with a lure containing eugenol were more attractive to northern corn rootworms, and those containing trans-cinnamaldehyde were most attractive to southern corn rootworms. Multigard sticky traps caught more beetles than did Pherocon AM sticky traps. In corn, a newly designed lure trap caught more beetles than did sticky traps on most occasions. Also, lure-baited sticky traps caught more beetles than did nonbaited sticky traps. Varying the color of the lure trap bottom did not affect the number caught. In soybeans, the new lure traps captured more beetles than did the nonbaited Multigard or Pherocon AM sticky traps. Results of this study suggest the new lure trap may provide a more accurate assessment of corn rootworm populations than traditional monitoring techniques and may be more esthetically pleasing to growers and consultants.  相似文献   

4.
Interest in the ecological and population genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, has grown rapidly in the last few years in North America and Europe. This interest is a result of a number of converging issues related to the increasing difficulty in managing this pest and the need to characterize and understand gene flow in the context of insect resistance management. One of the key components needed for successful population genetics studies is the availability of suitable molecular markers. Using a standard group of microsatellite markers enables researchers from different laboratories to directly compare and share their data, reducing duplication of effort and facilitating collaborative work among laboratories. We screened 22 candidate microsatellite loci against five criteria to create a core set of microsatellite markers for D. v. virgifera population genetics studies. The criteria for inclusion were moderate to high polymorphism, unambiguous readability and repeatability, no evidence of null alleles, apparent selective neutrality, and no linkage between loci. Based on our results, we recommend six microsatellite markers to be included as a core set in future population genetics studies of D. v. virgifera along with any other microsatellite or genetic markers. As more microsatellites are developed, those meeting the criteria can be added to the core set. We encourage other groups of researchers with common interests in a particular insect species to develop their own core sets of markers for population genetics applications.  相似文献   

5.
We studied management strategies for western corn rootworm, Diabrotica virgifera virgifera LeConte, using transgenic corn, Zea mays L., from both a biological and an economic perspective. In areas with and without populations adapted to a 2-yr rotation of corn and soybean (rotation-resistant), the standard management strategy was to plant 80% of a cornfield (rotated and continuous) to a transgenic cultivar each year. In each area, we also studied dynamic management strategies where the proportion of transgenic corn increased over time in a region. We also analyzed management strategies for a single field that is the first to adopt transgenic corn within a larger unmanaged region. In all areas, increasing the expression of the toxin in the plant increased economic returns. In areas without rotation-resistance, planting 80% transgenic corn in the continuous cornfield each year generated the greatest returns with a medium toxin dose or greater. In areas with alleles for rotation-resistance at low initial levels, a 2-yr rotation of nontransgenic corn and soybean, Glycine max (L.) Merr., may be the most economical strategy if resistance to crop rotation is recessive. If resistance to crop rotation is additive or dominant, planting transgenic corn in the rotated cornfield was the most effective strategy. In areas where rotation-resistance is already a severe problem, planting transgenic corn in the rotated cornfield each year was always the most economical strategy. In some cases the strategies that increased the proportion of transgenic corn in the region over time increased returns compared with the standard strategies. With these strategies the evolution of resistance to crop rotation occurred more rapidly but resistance to transgenic corn was delayed compared with the standard management strategy. In areas not managed by a regional norm, increasing the proportion of transgenic corn and increasing toxin dose in the managed field generally increased returns. In a sensitivity analysis, among the parameters investigated, only density-dependent survival affected the results.  相似文献   

6.
Abstract 1 The western corn rootworm (WCR), Diabrotica virgifera virgifera Leconte (Coleoptera: Chrysomelidae), creates economic and environmental concerns in the Corn Belt region of the U.S.A. To supplement the population control tactics of the Areawide Pest Management Program in Brookings, South Dakota, Geographical Information Systems (GIS) were used to examine the spatial relationships from 1997 to 2001 between WCR population dynamics, habitat structure, soil texture and elevation. 2 Using the inverse distance weighted interpolation technique, WCR population density maps were created from georeferenced emergence and post‐emergence traps placed in maize fields. For each year, these maps were overlaid with vegetation, soil and elevation maps to search for quantitative relationships. 3 Through visual interpretation and correlation analysis, shifts in landscape structure, such as size, number and arrangement of patches, were shown to associate with WCR population abundance and distribution in varying degrees. Contingency analysis showed that WCR population abundance is associated with soil texture and elevation. 4 An understanding of the interactions between WCR population dynamics and landscape variables provides information to pest managers, and this can be used to identify patterns in the landscape that promote high insect population density patches to improve pest management strategies.  相似文献   

7.
Abstract:  Western corn rootworm, Diabrotica virgifera virgifera LeConte, neonate susceptibility to clothianidin, a contact and systemic neonicotinoid insecticide, was determined from both laboratory and field-collected populations. Neonates were exposed to filter paper treated with increasing clothianidin concentrations and mortality was evaluated after 24 h. Additionally, two populations were exposed to an artificial diet which was surface treated with clothianidin. Although larvae were five- to six-fold more sensitive to treated diet, results with treated filter paper were more reliable in terms of control mortality and required much less manipulation of rootworm larvae. Therefore, initial baseline comparisons were conducted using the filter paper assays. The variation among populations exposed to treated filter paper was generally low, 4.4-fold among laboratory populations tested; however, there was a 14.5-fold difference in susceptibility among all populations tested. In general, clothianidin was very toxic to rootworm neonates, with LC50 values ranging from 1.5 to 21.9 ng/cm2. These results indicate the practicability and sensitivity of the paper filter disc assay to establish baseline susceptibility levels, which is an essential first step in resistance management. A baseline response provides a reference for tracking shifts in susceptibility following commercialization of a control agent so that early changes in susceptibility can be detected.  相似文献   

8.
Amounts of the insecticide thiamethoxam required for 50% mortality of western corn rootworm larvae, Diabrotica virgifera virgifera LeConte, were reduced 100-fold when extracts of germinating corn, Zea mays L., were used to entice neonate larvae to feed on it. In behavioral bioassays, neonate rootworm larvae fed vigorously on filter paper disks treated with liquid pressed from corn roots. Moreover, disks treated with an acetone extract of corn (dried and rewetted with water) also elicited strong feeding from larvae. Larvae wandered away from filter paper disks treated with distilled water without feeding. Dilutions of thiamethoxam were tested in the bioassay alone or with corn extract and the efficacy of this insecticide was improved by the addition of the corn extract. For solutions containing 10 ppm thiamethoxam, 95% larval mortality occurred after 30 min of exposure when corn extract was present, but only 38% mortality occurred when the same concentration of insecticide alone (no feeding stimulants) was tested. Larval mortality after 24 h was significantly higher for corn extract-treated disks with 0.01, 0.1, 1, or 10 ppm insecticide than for the same concentrations without corn extract. Thiamethoxam did not deter larval feeding on corn extract, even at the highest concentration of thiamethoxam tested.  相似文献   

9.
Using a bioassay-driven approach, we have isolated and identified a blend of compounds from the roots of germinating corn, Zea mays L., that serve as feeding stimulants for neonate western corn rootworm larvae, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). The active blend is a combination of simple sugars (30:4:4 mg/ml glucose:fructose:sucrose in the corn root) plus at least one of the free fatty acids in germinating corn roots (2:5 mg/ml oleic acid:linoleic acid in the corn root). When an extract of germinating corn was partitioned into an ethyl acetate fraction and an aqueous fraction, full feeding occurred only when the two fractions were recombined, indicating that the phagostimulant was comprised of both polar and nonpolar components. Gas chromatography-mass spectrometry analysis of root extracts from germinating corn seedlings revealed a blend of 20 compounds from a variety of chemical classes, including small sugars, diacids, amino acids, inorganic compounds, and free fatty acids. When the major components were tested in feeding bioassays, the sugars and lipids were shown to be essential for feeding by larvae, but the two classes of compounds were only effective when combined. The sugars alone elicited feeding by only 40% of larvae, but the percentage of larvae feeding was increased significantly with the addition of linoleic acid (91.7% larvae feeding) or oleic acid (85.8% larvae feeding). The amino acids alone were not essential elements for feeding by western corn rootworm larvae.  相似文献   

10.
A stochastic spatially explicit computer model is described that simulates the adaptation by western corn rootworm, Diabrotica virgifera virgifera LeConte, to rootworm-resistance traits in maize. The model reflects the ecology of the rootworm in much of the corn belt of the United States. It includes functions for crop development, egg and larval mortality, adult emergence, mating, egg laying, mortality and dispersal, and alternative methods of rootworm control, to simulate the population dynamics of the rootworm. Adaptation to the resistance trait is assumed to be controlled by a monogenic diallelic locus, whereby the allele for adaptation varies from incompletely recessive to incompletely dominant, depending on the efficacy of the resistance trait. The model was used to compare the rate at which the adaptation allele spread through the population under different nonresistant maize refuge deployment scenarios, and under different levels of crop resistance. For a given refuge size, the model indicated that placing the nonresistant refuge in a block within a rootworm-resistant field would be likely to delay rootworm adaptation rather longer than planting the refuge in separate fields in varying locations. If a portion of the refuge were to be planted in the same fields or in-field blocks each year, rootworm adaptation would be delayed substantially. Rootworm adaptation rates are also predicted to be greatly affected by the level of crop resistance, because of the expectation of dependence of functional dominance on dose. If the dose of the insecticidal protein in the maize is sufficiently high to kill >90% of heterozygotes and approximately 100% of susceptible homozygotes, the trait is predicted to be much more durable than if the dose is lower. A partial sensitivity analysis showed that parameters relating to adult dispersal affected the rate of pest adaptation. Partial validation of the model was achieved by comparing output of the model with field data on population dynamics, and with field data documenting rootworm adaptation to cyclodienes and organophosphates.  相似文献   

11.
Crop monitoring for adult corn rootworms, Diabrotica virgifera virgifera LeConte and Diabrotica barberi Smith and Lawrence, remains the best means to assess fields at risk from this pest if replanted to corn, Zea mays (L.). Improvements in sampling methodology, including the development of a sequential sampling plan, have reduced the minimum sampling time required to make a management decision to 20 min or less per field per visit. However, many growers and crop consultants still find this time commitment a constraint to repeated scouting. A common currently used sampling method involves systematically covering most of the field following a "W" pattern. The feasibility of replacing the current sampling pattern with a simpler and less time-consuming transect (straight line) pattern was assessed. When sampling methods were compared, computer simulations demonstrated that treatment decisions based on transect sampling would have an acceptably low error rate averaging 10% over a range of realistic corn rootworm densities (0-2 adults per plant). This error rate represented a decrease in accuracy of <1% compared with systematic sampling. Field trials using transect, systematic, and random sampling in each field were used to compare the categorization of adult corn rootworm densities into "above" or "below" threshold with a sequential sampling plan. Efficiency measured in time to reach a decision, number of corn plants evaluated, and time divided by plants observed were compared between sampling methods. The three methods did not differ significantly in the number of plants evaluated or in the categorization of corn rootworm populations. Transect sampling resulted in a significantly shorter time divided by plants observed (38 s), than either systematic (78 s), or random sampling methods (166 s). Based on these results transect sampling reduces sampling time 51% compared with systematic sampling and thus could be used to reduce total sampling times substantially.  相似文献   

12.
If registered, transgenic corn, Zea mays L., with corn rootworm resistance will offer a viable alternative to insecticides for managing Diabrotica spp. corn rootworms. Resistance management to maintain susceptibility is in the interest of growers, the Environmental Protection Agency, and industry, but little is known about many aspects of corn rootworm biology required for an effective resistance management program. The extent of larval movement by the western corn rootworm, Diabrotica virgifera virgifera LeConte, that occurs from plant-to-plant or row-to-row after initial establishment was evaluated in 1998 and 1999 in a Central Missouri cornfield. Post-establishment movement by western corn rootworm larvae was clearly documented in two of four treatment combinations in 1999 where larvae moved up to three plants down the row and across a 0.46-m row. Larvae did not significantly cross a 0.91-m row after initial host establishment in 1998 or 1999, whether or not the soil had been compacted by a tractor and planter. In the current experiment, western corn rootworm larvae moved from highly damaged, infested plants to nearby plants with little to no previous root damage. Our data do not provide significant insight into how larvae might disperse after initial establishment when all plants in an area are heavily damaged or when only moderate damage occurs on an infested plant. A similar situation might also occur if a seed mixture of transgenic and isoline plants were used and if transgenic plants with rootworm resistance are not repellent to corn rootworm larvae.  相似文献   

13.
Abundance and head capsule width were measured for northern (Diabrotica barberi Smith & Lawrence) and western corn rootworm (D. virgifera virgifera LeConte) larvae recovered primarily from maize root systems but also from large soil cores each centered around a root system. Larvae for measurement derived from field populations under infestation and rotation regimes that allowed most specimens to be assigned to species. A frequency distribution of head capsule widths indicated three separate peaks for western corn rootworm, presumably representing frequency of the three larval instars, with no larvae measuring 280 or 420 microm in the valleys between peaks. Multiple normal curves fit to similar but partially overlapping peaks generated by northern corn rootworm suggested that division of first to second and second to third instar can best be made for this species at 267 and 406 microm, respectively (270 and 410 when measurements are made to the nearest 20 microm). These results implied that instar of individuals from mixed northern and western corn rootworm populations can be accurately judged from head capsule width without having to determine species. The relative abundance of western corn rootworm instars was similar in root systems removed from the center of 19-cm diameter x 19-cm deep soil cores and in soil cores from which the root systems were removed. Furthermore, the number of larvae from root systems correlated significantly with that from the surrounding soil. These results indicated that the former and much more convenient sampling unit can be used to estimate population developmental stage and possibly density, at least early in the season when these tests were done and young larvae predominated.  相似文献   

14.
Field and laboratory studies were conducted in 2000 and 2001 to determine the feasibility of mass marking western corn rootworm adults, Diabrotica virgifera virgifera LeConte, with RbCl in the field. Results showed that application of rubidium (Rb) in solution to both the soil (1 g Rb/plant) and whorl (1 g Rb/plant) of corn plants was optimal for labeling western corn rootworm adults during larval development. Development of larvae on Rb-enriched corn with this technique did not significantly influence adult dry weight or survival. Rb was also highly mobile in the plant. Application of Rb to both the soil and the whorl resulted in median Rb concentrations in the roots (5,860 ppm) that were 150-fold greater than concentrations in untreated roots (38 ppm) 5 wk after treatment. Additionally, at least 90% of the beetles that emerged during the first 3 wk were labeled above the baseline Rb concentration (5 ppm dry weight) determined from untreated beetles. Because emergence was 72% complete at this time, a significant proportion of the population had been labeled. Results from laboratory experiments showed that labeled beetles remained distinguishable from unlabeled beetles for up to 4 d postemergence. The ability to efficiently label large numbers of beetles under field conditions and for a defined period with virtually no disruption of the population provides an unparalleled opportunity to conduct mark-recapture experiments for quantifying the short-range, intrafield movement of adult corn rootworms.  相似文献   

15.
We develop a population genetics model for the northern corn rootworm, Diabrotica barberi Smith & Lawrence, to examine the effect of extended diapause on the evolution of resistance to transgenic Bacillus thuringiensis (Bt) corn, Zea mays L. We model conditions found in the center of the extended diapause problem along the Minnesota-South Dakota-Iowa borders. The proportion of resistance alleles in eggs oviposited after 15 simulated years is used to measure the evolution of resistance. Sensitivity analysis indicates that although population genetics parameters (fecundity, initial egg density, density-dependent larval survival, random mating, insecticide mortality, and gene expression) affect the evolution of resistance, product characteristics (e.g., Bt toxin dose) and farmer management practices (e.g., insecticide use on refuge corn and rotation pattern) generally have a larger impact on the development of resistance. Exceptions to this generalization exist: 1) if the resistance allele is dominant, resistance evolves quickly; 2) the level of random mating is an important determinant of how quickly resistance evolves for a theoretical high dose product; and 3) small differences in insecticide mortality imply large differences in resistance for medium- and low-dose products with high levels of Bt corn adoption and a predominance of 1- and 2-yr corn rotations. When extended diapause spreads into a new area, it typically reduces resistance to Bt corn, assuming Bt corn is used only on continuous corn. In the study region where extended diapause already exists, increasing extended diapause (increasing hatch rates after two or three winters while holding total hatch constant), tends to increase resistance because the resistance increasing effect of the hatch rate after two winters dominates the resistance decreasing effect of the hatch rate after three winters. However, this is not always the case, because combinations of rotation pattern, toxin dose, and soil insecticide use exist for which the net effect of extended diapause decreases resistance. Results are interpreted as a combination of two offsetting effects. First, extended diapause injects older alleles with lower resistance allele frequencies into the breeding population, which slows resistance. Second, extended diapause speeds the population's recovery from perturbations (reduces the undercompensating density dependence of population dynamics), which accelerates resistance.  相似文献   

16.
Western corn rootworm (Diabrotica virgifera virgifera LeConte) resistance management for transgenic (or Bt) corn hinges on understanding the mating behavior and biology of this adaptable insect pest. During mating, the male transfers sperm and additional, previously uncharacterized material, to the female in the form of a spermatophore. We investigated the composition of rootworm spermatophores. Proteins were found to be a major component, and the stable isotope (15)N was used to assess the fate of spermatophore nitrogen in mated female beetles and their eggs. We also performed longevity studies on mated and virgin females under three different diet treatments and investigated the relationships between morphometric characteristics and spermatophore volume of mating pairs of beetles. The stable isotope analysis determined that nitrogen provided to the female in the spermatophore was incorporated into the eggs. We found that virgin female beetles on a corn diet lived significantly longer than mated female beetles on the same diet. There were significant positive relationships between male size parameters (head capsule width, pronotum width, and elytral length) and spermatophore volume, and ampulla and spermatophylax volume.  相似文献   

17.
A simulation model of the population dynamics and genetics of the western corn rootworm, Diabrotica virgifera virgifera LeConte, was created for a landscape of corn, soybean, and other crops. Although the model was created to study a 2-locus problem for beetles having genes for resistance to both crop rotation and transgenic corn, during this first phase of the project, the model was simulated to evaluate only resistance management plans for transgenic corn. Allele expression in the rootworm and toxin dose in the corn plant were the two most important factors affecting resistance development. A dominant resistance allele allowed quick evolution of resistance to transgenic corn, whereas a recessive allele delayed resistance >99 yr. With high dosages of toxin and additive expression, the time required to reach 3% resistance allele frequency ranged from 13 to >99 yr. With additive expression, lower dosages permitted the resistant allele frequency to reach 3% in 2-9 yr with refuges occupying 5-30% of the land. The results were sensitive to delays in emergence by susceptible adults and configuration of the refuge (row strips versus blocks).  相似文献   

18.
SUM2162 is the first known example of a naturally occurring maize, Zea mays L., genotype with antixenosis (nonpreference) resistance to western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), larval feeding. Behavioral responses of neonate western corn rootworm larvae were evaluated in laboratory bioassays with seven maize genotypes selected for native resistance to rootworm feeding damage. Two susceptible maize genotypes and one transgenic (Bacillus thuringiensis) maize genotype were included as controls. In soil bioassays with cut roots, no larvae entered the roots of the resistant variety SUM2162, but at least 75% of the larvae entered the roots of every other maize type. Larvae made significantly fewer feeding holes in the roots of SUM2162 than in all the other maize genotypes, except the isoline control. In feeding bioassays, larval feeding varied significantly among maize genotypes, but there was no significant difference between the resistant varieties and the susceptible controls. There were no significant differences among any of the genotypes in host recognition (search) behavior of larvae after exposure to the roots. Little variation in feeding stimulant blends was observed among maize genotypes, indicating minimal contribution to the observed antixenosis.  相似文献   

19.
A greenhouse experiment was conducted to evaluate the effect of soil-dwelling larvae of the western corn rootworm, Diabrotica virgifera virgifera LeConte, on infection of maize roots by the mycotoxin-producing plant-pathogenic fungus, Fusarium verticillioides (Saccardo) Nirenberg (synonym=Fusarium moniliforme Sheldon). The time and order of application of F. verticillioides and western corn rootworm were varied in three different treatments to investigate the influence of timing on root colonization of F. verticillioides and western corn rootworm larval development. Root feeding by western corn rootworm larvae increased root colonization by F. verticillioides (as determined by real-time polymerase chain reaction) up to 50-fold when a high inoculum (10(7) spores/plant) of F. verticillioides was applied before western corn rootworm eggs were added. This effect was stronger the earlier F. verticillioides was applied relative to the time of western corn rootworm egg application but was only significant for the high F. verticillioides inoculum density treatment; F. verticillioides colonization was not increased when a low F. verticillioides inoculum density (10(6) spores/plant) was applied. F. verticillioides slightly suppressed larval development in that the ratio of second- to third-instar larvae was higher in treatments with F. verticillioides than without F. verticillioides. F. verticillioides reduced western corn rootworm head capsule width when applied before or simultaneously with western corn rootworm. The results of this study are discussed focusing on conditions that favor root colonization by F. verticillioides and its influence on western corn rootworm larval development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号