首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Eight terminally deleted Drosophila melanogaster chromosomes have now been found to be "healed." In each case, the healed chromosome end had acquired sequence from the HeT DNA family, a complex family of repeated sequences found only in telomeric and pericentric heterochromatin. The sequences were apparently added by transposition events involving no sequence homology. We now report that the sequences transposed in healing these chromosomes identify a novel transposable element, HeT-A, which makes up a subset of the HeT DNA family. Addition of HeT-A elements to broken chromosome ends appears to be polar. The proximal junction between each element and the broken chromosome end is an oligo(A) tract beginning 54 nucleotides downstream from a conserved AATAAA sequence on the strand running 5' to 3' from the chromosome end. The distal (telomeric) ends of HeT-A elements are variably truncated; however, we have not yet been able to determine the extreme distal sequence of a complete element. Our analysis covers approximately 2,600 nucleotides of the HeT-A element, beginning with the oligo(A) tract at one end. Sequence homology is strong (greater than 75% between all elements studied). Sequence may be conserved for DNA structure rather than for protein coding; even the most recently transposed HeT-A elements lack significant open reading frames in the region studied. Instead, the elements exhibit conserved short-range sequence repeats and periodic long-range variation in base composition. These conserved features suggest that HeT-A elements, although transposable elements, may have a structural role in telomere organization or maintenance.  相似文献   

5.
The genomic organization of HeT-A retroposons inDrosophila melanogaster   总被引:1,自引:1,他引:0  
Members of theDrosophila HeT-A family of transposable elements are LINE-like retroposons that are found at telomeres and in centric heterochromatin. We recently characterized an active HeT-A element that had transposed to a broken chromosome end fewer than mine generations before it was isolated. The sequence arerangement of this element, called 9D4, most likely represents the organization of an actively transposing member of the HeT-A family. Here we assess the degree of divergence among members of the HeT-A family and test a model of telomere length maintenance based on HeT-A transposition. The region containing the single open reading frame of this element appears to be more highly conserved than the non-coding regions. The HeT-A element has been implicated in theDrosophila telomere elongation process, because frequent transpositions to chromosome ends are sufficient to counter-balance nucleotide loss due to incomplete DNA replication. The proposed elongation model and the hypothetical mechanism of HeT-A transposition predict a predominant orientation of HeT-A elements with their oligo (A) tails facing proximally at chromosome ends, as well as the existence of irregular tandem arrays of HeT-A elements at chromosome ends resulting from transposition of new HeT-A elements onto chromosome ends with existing elements. Twenty-nine different HeT-A fragments were isolated from directional libraries that were enriched in terminal DNA fragments. Sequence analyses of these fragments and comparisons with the organization of the HeT-A element, 9D4, fit these two predictions and support the model ofDrosophila telomere elongation by transposition of HeT-A elements.  相似文献   

6.
Pardue ML  DeBaryshe PG 《Fly》2008,2(3):101-110
In Drosophila, the role of telomerase is carried out by three specialized retrotransposable elements, HeT-A, TART and TAHRE. Telomeres contain long tandem head-to-tail arrays of these elements. Within each array, the three elements occur in random, but polarized, order. Some are truncated at the 5' end, giving the telomere an enriched content of the large 3' untranslated regions, which distinguish these telomeric elements from other retrotransposons. Thus, Drosophila telomeres resemble other telomeres because they are long arrays of repeated sequences, albeit more irregular arrays than those produced by telomerase. The telomeric retrotransposons are reverse-transcribed directly onto the end of the chromosome, extending the end by successive transpositions. Their transposition uses exactly the same method by which telomerase extends chromosome ends--copying an RNA template. In addition to these similarities in structure and maintenance, Drosophila telomeres have strong functional similarities to other telomeres and, as variants, provide an important model for understanding general principles of telomere function and evolution.  相似文献   

7.
In Drosophila melanogaster, hybrid dysgenesis occurs in progeny from crosses between females lacking P elements and males carrying P elements scattered throughout the genome. We have genetically isolated a naturally occurring P insertion at cytological location 1A, from a Tunisian population. The Nasr'Allah-P(1A) element [NA-P(1A)] has a deletion of the first 871 bp including the P promoter. It is flanked at the 3' end by telomeric associated sequences and at the 5' end by a HeT-A element sequence. The NA-P(1A) element strongly represses dysgenic sterility and P transposition. However, when testing P-promoter repression, NA-P(1A) was unable to repress a germinally expressed P-lacZ construct bearing no 5'-homology with it. Conversely, a second P-lacZ construct, in which the fusion with lacZ takes place in exon 3 of P, was successfully repressed by NA-P(1A). This suggests that NA-P(1A) repression involves a homology-dependent component.  相似文献   

8.
The maintenance of the telomeres in Drosophila species depends on the transposition of the non-LTR retrotransposons HeT-A, TAHRE and TART. HeT-A and TART elements have been found in all studied species of Drosophila suggesting that their function has been maintained for more than 60 million years. Of the three elements, HeT-A is by far the main component of D. melanogaster telomeres and, unexpectedly for an element with an essential role in telomere elongation, the conservation of the nucleotide sequence of HeT-A is very low. In order to better understand the function of this telomeric retrotransposon, we studied the degree of conservation along HeT-A copies. We identified a small sequence within the 3' UTR of the element that is extremely conserved among copies of the element both, within D. melanogaster and related species from the melanogaster group. The sequence corresponds to a piRNA target in D. melanogaster that we named HeT-A_pi1. Comparison with piRNA target sequences from other Drosophila retrotransposons showed that HeT-A_pi1 is the piRNA target in the Drosophila genome with the highest degree of conservation among species from the melanogaster group. The high conservation of this piRNA target in contrast with the surrounding sequence, suggests an important function of the HeT-A_pi1 sequence in the co-evolution of the HeT-A retrotransposon and the Drosophila genome.  相似文献   

9.
A specific telomere was deleted in spontaneous, gain-of-virulence mutants derived from a rice pathogen of Magnaporthe grisea. Three different types of transposons, including Pot2, Mg-SINE, and a novel, 6-kb-long LTR (long terminal repeat)-type retrotransposon designated MGLR-3, were identified on this chromosomal end. The 114-bp-long telomeric repeat is immediately followed by the 3' LTR of MGLR-3. A truncated copy of Pot2 immediately flanks the 5' LTR, suggesting that this telomere was generated by a transposition event of MGLR-3 into this Pot2 element, causing the breakage of a chromosome. The subsequent addition of a telomeric repeat to the 3' LTR of MGLR-3 most probably repaired the broken end of the chromosome. Mg-SINE is located 25 bp away from the truncated Pot2 element. MGLR-3 exhibited strong homology to various gypsy-class retrotransposons, including grh and MAGGY in M. grisea. MGLR-3 is ubiquitous regardless of the host of origin.  相似文献   

10.
11.
One model of telomeric position effect (TPE) in Drosophila melanogaster proposes that reporter genes in the vicinity of telomeres are repressed by subterminal telomere-associated sequences (TAS) and that variegation of these genes is the result of competition between the repressive effects of TAS and the stimulating effects of promoters in the terminal HeT-A transposon array. The data presented here support this model, but also suggest that TPE is more complex. Activity of a telomeric white reporter gene increases in response to deletion of some or all of the TAS on the homolog. Only transgenes next to fairly long HeT-A arrays respond to this trans-interaction. HeT-A arrays of 6-18 kb respond by increasing the number of dark spots on the eye, while longer arrays increase the background eye color or increase the number of spots sufficiently to cause them to merge. Thus, expression of a subtelomeric reporter gene is influenced by the telomere structure in cis and trans. We propose that the forces involved in telomere length regulation in Drosophila are the underlying forces that manifest themselves as TPE. In the wild-type telomere TAS may play an important role in controlling telomere elongation by repressing HeT-A promoter activity. Modulation of this repression by the homolog may thus regulate telomere elongation.  相似文献   

12.
13.
HeT-A elements are a new family of transposable elements in Drosophila that are found exclusively in telomeric regions and in the pericentric heterochromatin. Transposition of these elements onto broken chromosome ends has been implicated in chromosome healing. To monitor the fate of HeT-A elements that had attached to broken ends of the X chromosome, we examined individual X chromosomes from a defined population over a period of 17 generations. The ends of the X chromosomes with new HeT-A additions receded at the same rate as the broken ends before the HeT-A elements attached. In addition, some chromosomes, approximately 1% per generation, had acquired new HeT-A sequences of an average of 6 kb at their ends with oligo(A) tails at the junctions. Thus, the rate of addition of new material per generation matches the observed rate of terminal loss (70-75 bp) caused by incomplete replication at the end of the DNA molecule. One such recently transposed HeT-A element which is at least 12 kb in length has been examined in detail. It contains a single open reading frame of 2.8 kb which codes for a gag-like protein.  相似文献   

14.
Cenci G  Siriaco G  Gatti M 《Genetica》2003,117(2-3):311-318
Drosophila telomeres contain multiple copies of HeT-A and TART retrotransposons. These elements specifically transpose to chromosomal ends, compensating for loss of terminal nucleotides that occurs at each cycle of DNA replication. We have investigated the role of these sequences in the formation of telomere–telomere attachments induced by mutations in the UbcD1 gene. We have constructed UbcD1 mutant males carrying terminally deleted X chromosomes devoid of both HeT-A and TART sequences. Cytological analysis of larval neuroblasts from these males revealed that telomeres lacking HeT-A and TART and normal telomeres that contain these sequences participate in telomeric fusions with comparable frequencies. These results indicate that the UbcD1 substrate(s) binds chromosomal termini in a sequence-independent manner. Previous studies have shown that the telomere-capping protein HP1 also binds telomeres lacking HeT-A and TART. Taken together, these findings strongly suggest that the assembly of DNA–protein complexes that protect chromosome ends from fusions do not require specific terminal sequences.  相似文献   

15.
Telomeres of Drosophila melanogaster contain arrays of the retrotransposon-like elements HeT-A and TART. Their transposition to broken chromosome ends has been implicated in chromosome healing and telomere elongation. We have developed a genetic system which enables the determination of the frequency of telomere elongation events and their mechanism. The frequency differs among lines with different genotypes, suggesting that several genes are in control. Here we show that the Su(var)2-5 gene encoding heterochromatin protein 1 (HP1) is involved in regulation of telomere length. Different Su(var)2-5 mutations in the heterozygous state increase the frequency of HeT-A and TART attachment to the broken chromosome end by more than a hundred times. The attachment occurs through either HeT-A/TART transposition or recombination with other telomeres. Terminal DNA elongation by gene conversion is greatly enhanced by Su(var)2-5 mutations only if the template for DNA synthesis is on the same chromosome but not on the homologous chromosome. The Drosophila lines bearing the Su(var)2-5 mutations maintain extremely long telomeres consisting of HeT-A and TART for many generations. Thus, HP1 plays an important role in the control of telomere elongation in D. melanogaster.  相似文献   

16.
HeT-A elements are non-long terminal repeat retrotransposons added onto the Drosophila chromosome ends. We have investigated the formation in vitro of higher order structures by oligonucleotides derived from the 3' non-coding region of HeT-A elements and found that they are capable of forming G-quadruplex DNA. These results suggest that the 3' repeat region of HeT-A may structurally behave as the telomeric repeats common to a majority of eukaryotes. The presence of structural motifs shared by telomeres and centromeres and the implications of these findings for chromosome evolution are discussed.  相似文献   

17.
18.
Recognition and elongation of telomeres by telomerase   总被引:9,自引:0,他引:9  
Telomeres stabilize chromosomal ends and allow their complete replication in vivo. In diverse eukaryotes, the essential telomeric DNA sequence consists of variable numbers of tandem repeats of simple, G + C rich sequences, with a strong strand bias of G residues on the strand oriented 5' to 3' toward the chromosomal terminus. This strand forms a protruding 3' over-hang at the chromosomal terminus in three different eukaryotes analyzed. Analysis of yeast and protozoan telomeres showed that telomeres are dynamic structures in vivo, being acted on by shortening and lengthening activities. We previously identified and partially purified an enzymatic activity, telomere terminal transferase, or telomerase, from the ciliate Tetrahymena. Telomerase is a ribonucleoprotein enzyme with essential RNA and protein components. This activity adds repeats of the Tetrahymena telomeric sequence, TTGGGG, onto the 3' end of a single-stranded DNA primer consisting of a few repeats of the G-rich strand of known telomeric, and telomere-like, sequences. The shortest oligonucleotide active as a primer was the decamer G4T2G4. Structural analysis of synthetic DNA oligonucleotides that are active as primers showed that they all formed discrete intramolecular foldback structures at temperatures below 40 degrees C. Addition of TTGGGG repeats occurs one nucleotide at a time by de novo synthesis, which is not templated by the DNA primer. Up to 8000 nucleotides of G4T2 repeats were added to the primer in vitro. We discuss the implications of this finding for regulation of telomerase in vivo and a model for telomere elongation by telomerase.  相似文献   

19.
A yeast Saccharomyces cerevisiae telomeric region was isolated by chromosome walking from HML alpha, the most distal known gene on the chromosome III left (IIIL) end. The terminal heterodisperse 3.3-kilobase (kb) SalI fragment on chromosome IIIL, 8.6 kb distal to HML alpha, was cloned in a circular vector to generate a telomeric probe. Southern hybridization and DNA sequencing analyses indicated that 0.6 kb (+/- 200 base pairs) of 5'-C1-3A-3' simple tandem repeat sequence, adjacent to a 1.2-kb type X ARS region, constitutes the telomere on the chromosome IIIL end, and no type Y' ARS region homologies exist between HML alpha and the IIIL terminus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号