首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The close connection between reproductive ecology and life history in snakes leads to trade-offs between reproductive and other life-history traits. Optimal energy allocation to growth and reproduction is a key factor to determine life history structure. Therefore, elucidating the relationship between body size variations and reproductive characters is essential for a better understanding of life-history plasticity. The aim of this work was to determine to what extent life-history differs among populations of Boa constrictor occidentalis and to identify possible life-history trade-offs between morphological and reproductive traits. We compared two populations from areas that are separated latitudinally, with different climatic conditions and vegetation landscape structure. Reproductive and morphological data of specimens were recorded. Although populations had a similar mean length of mature snakes, the frequency of some size classes tended to be different. Size at sexual maturity differed between populations for females, generating variations in the proportion of mature individuals. Reproductive threshold and follicular size also varied, but female reproductive frequency was similar between populations. Reproductive frequency of males varied between populations although their body condition was similar. We discussed two major issues: (1) implications of size at sexual maturity for body size and fecundity; (2) trade-offs in reproductive characters.  相似文献   

2.
Reproductive traits of tropical tree species vary predictably in relation to successional stage, but this variation may be due to the species' phylogenetic histories rather than selective pressures imposed by regeneration requirements. Reproductive phenology, tree size at the onset of reproduction, and fecundity of 11 sympatric, closely related Macaranga species were studied to investigate within-species variation in reproductive traits in relation to resource availability, and among-species variation in relation to other life-history traits (shade tolerance, seed size and maximum tree size, H(max)) and consequently the requirements for forest-gap colonization. Nine species reproduced in synchronous episodes, and two species reproduced continuously over 32 mo. Episodic reproduction was most intense in 1992 following a severe drought. For several species, reproductive trees had greater light availability, lower fecundity in lower light levels, and lower growth rates than nonreproductive trees, reflecting resource-limited reproduction. Among species, H(max) was negatively correlated with shade tolerance and seed size. Tree size at the onset of reproduction and fecundity was strongly linked to this axis of life-history variation, but phenological pattern was not. Absolute tree size at the onset of reproduction was positively correlated with H(max) and negatively correlated with shade tolerance. Relative size at reproductive onset was not correlated with shade tolerance or H(max). Fecundity ranged four orders of magnitude among species and was correlated positively with H(max) and negatively with seed size and shade tolerance. The interrelationships among these reproductive and other life-history traits are strongly correlated with the species' requirements for gap colonization.  相似文献   

3.
Life history theory suggests that the optimal evolved level of reproductive effort (RE) for an organism depends upon the degree to which additional current reproductive investment reduces future reproductive output. Future reproduction can be decreased in two ways, through (i) decreases in the organism's survival rate, and/or (ii) decreases in the organism's growth (and hence subsequent fecundity). The latter tradeoff–that is, the “potential fecundity cost”—should affect the evolution of RE only in species with relatively high survival rate, a relatively high rate of fecundity increase with body size, or a relatively high reproductive frequency per annum. Unless these conditions are met, the probable benefit in future fecundity obtained from decreasing present reproductive output is too low for natural selection to favor any reduction in RE below the maximum physiologically possible. Published data on survival rate, reproductive frequency and relative clutch mass (RCM) suggest that many lizard species fall well below the level at which natural selection can be expected to influence RE through such “potential fecundity” tradeoffs. Hence, the relative allocation of resources between growth and reproduction is unlikely to be directly optimized by natural selection in these animals. Instead, energy allocation should influence the evolution of RE only indirectly, via effects on an organism's probability of survival during reproduction. Survival costs of reproduction may be the most important evolutionary determinants of RE in many reptiles, and information on the nature and extent of such costs is needed before valid measures of reptilian RE can be constructed.  相似文献   

4.
The evolutionary theory of senescence predicts that high extrinsic mortality in natural populations should select for accelerated reproductive investment and shortened life span. Here, we test the theory with natural populations of the Daphnia pulex-pulicaria species complex, a group of freshwater zooplankton that spans an environmental gradient of habitat permanence. We document substantial genetic variation in demographic life-history traits among parent and hybrid populations of this complex. Populations from temporary ponds have shorter life spans, earlier and faster increases of intrinsic mortality risk, and earlier and steeper declines in fecundity than populations from permanent lakes. We also examine the age-specific contribution to fitness, measured by reproductive value, and to expected lifetime reproduction; these traits decline faster in populations from temporary ponds. Despite having more rapid senescence, pond Daphnia exhibit faster juvenile growth and higher early fitness, measured as population growth rate (r). Among populations within this species complex we observed negative genetic correlations between r and indices of life-history timing, suggesting trade-offs between early- and late-life performance. Our results cannot be explained by a trade-off between survival and fecundity or by nonevolutionary theories of senescence. Instead, our data are consistent with the evolutionary theory of senescence because the genetic variation in life histories we observed is roughly congruent with the temporal scale of environmental change in the field.  相似文献   

5.
Placental reproduction is widespread across vertebrate taxa, but little is known about its life-history correlates and putative adaptive value. We studied variation in life-history traits in two populations of the placental poeciliid fish Poeciliopsis prolifica to determine whether differences in post-fertilization maternal provisioning to embryos have a genetic basis and how food availability affects reproduction. Life histories were characterized for wild-caught females and for second-generation lab-born females raised under two levels of food availability. We found that the two populations did not differ significantly in the wild for any life-history traits except for the lipid dry weight in females and in embryos at an advanced stage of development. When environmental effects were experimentally controlled, however, populations exhibited significant differences in several traits, including the degree of maternal provisioning to embryos. Food availability significantly affected female size at first parturition, brood size and offspring dry weight at birth. Altogether, these results demonstrate that population differences in maternal provisioning and other life-history traits have a genetic basis and show a plastic response to food availability. We infer that phenotypic plasticity may mask population differences in the field. In addition, when comparing life-history patterns in these two populations with known patterns in placental and non-placental poeciliids, our results support the hypotheses that placentation is an adaptive reproductive strategy under high-resource conditions but that it may represent a cost under low-food conditions. Finally, our results highlight that age at maturity and reproductive allotment may be key life-history traits accompanying placental evolution.  相似文献   

6.
There is increasing evidence that the environment experienced early in life can strongly influence adult life histories. It is largely unknown, however, how past and present conditions influence suites of life-history traits regarding major life-history trade-offs. Especially in animals with indeterminate growth, we may expect that environmental conditions of juveniles and adults independently or interactively influence the life-history trade-off between growth and reproduction after maturation. Juvenile growth conditions may initiate a feedback loop determining adult allocation patterns, triggered by size-dependent mortality risk. I tested this possibility in a long-term growth experiment with mouthbrooding cichlids. Females were raised either on a high-food or low-food diet. After maturation half of them were switched to the opposite treatment, while the other half remained unchanged. Adult growth was determined by current resource availability, but key reproductive traits like reproductive rate and offspring size were only influenced by juvenile growth conditions, irrespective of the ration received as adults. Moreover, the allocation of resources to growth versus reproduction and to offspring number versus size were shaped by juvenile rather than adult ecology. These results indicate that early individual history must be considered when analysing causes of life-history variation in natural populations.  相似文献   

7.
The tradeoff between survival and reproduction is a central feature of life‐history variation, but few studies have sought to explain why females of some species exhibit relatively lower survival than expected for a given level of reproductive effort (RE). Intralocus sexual conflict theory proposes that sex differences in selection on survival and RE may, by virtue of shared genes underlying these components of fitness, prevent females from optimizing this life‐history tradeoff. To test this hypothesis, we used a phylogenetically based comparative analysis of published estimates for mean annual survival and RE from females of 82 lizard species to (1) characterize the tradeoff between survival and reproduction and (2) test whether variation around this tradeoff is explained by sexual size dimorphism (SSD), a potential proxy for sexual conflict over life‐history traits. Across species, we found a strong negative correlation between mean annual survival and RE, confirming this classic life‐history tradeoff. Although residual variance around this tradeoff is unrelated to the absolute magnitude of SSD, it is strongly related to the direction of SSD. Specifically, we found that females have lower survival than expected for a given level of RE in female‐larger species, whereas they have higher survival than expected in male‐larger species. Given that female‐larger SSD is thought to reflect selection for increased fecundity, our results suggest that intralocus sexual conflict may be particularly likely to constrain female life‐history evolution in situations where increased RE is favored, but the phenotypes that facilitate this increase (e.g., body size) are constrained by antagonistic selection on males.  相似文献   

8.
In anurans, fecundity (clutch size) is the most important determinant of female reproductive success. We investigated three possible causes responsible for fecundity variation in female Italian treefrogs, Hyla intermedia, during four breeding seasons: (i) variation in morphological (body size and condition) and life-history (age) traits; (ii) variation in the tradeoff between the number and the size of eggs; (iii) seasonal effects and within-season differences in the timing of deposition. At the population level, we found no evidence for a tradeoff between the number and the size of eggs, because they both correlated positively with females’ body size. Conversely, neither age nor post-spawning body condition showed any effect on female reproductive investment. Independent of body size, we found no evidence for variation in reproductive effort among different breeding seasons, but strong evidence for a decrease of clutch size and an increase of egg size with the advancing of a breeding season. To test for the functional significance of the observed temporal variation in allocation strategy, we carried out a rearing experiment in semi-natural conditions on a random sample of ten clutches. The experiment showed a negative effect of clutch size and a positive effect of egg size on both tadpole growth and developmental rates, suggesting that reproductive investment, although constrained by body size, can be adjusted by females to the time of deposition to increase the chances of offspring survival.  相似文献   

9.
Anders Forsman 《Oecologia》2001,129(3):357-366
Theory posits that reproduction carries a cost in terms either of future fecundity, growth or survival. Different life history strategies may evolve in response to different external sources of mortality. In ectothermic organisms, such as insects and reptiles, reproductive characteristics may also vary due to effects of differences in body temperature on activity and physiological performance. In this study, female pygmy grasshoppers [Tetrix subulata (L.) Orthoptera: Tetrigidae] belonging to four different colour morphs were maintained under two different temperatures, and data on reproductive life history traits were used to test for costs of reproduction, plasticity of reproductive characteristics in response to temperature and variation among colour morphs in reproductive strategies. The results revealed that average clutch size decreased progressively from the first to third clutch, and that females producing relatively large clutches displayed a greater reduction (in both absolute and relative terms) in the number of eggs to the following clutch, as expected from the hypothesis that present reproduction negatively affects future fecundity. Great expenditure on present reproduction also negatively influenced the time to next clutch:the decrease in mean clutch size with clutch number was associated with a reduction in inter-clutch interval, and clutch interval increased with clutch size across individuals within colour morphs. Females maintained in a warm environment were more likely to oviposit, laid their first clutch earlier, produced more clutches and had shorter intervals between sequential clutchesthan females in a cold environment, suggesting that differences in body temperature may contribute to variation in reproductive performance within and among natural populations. A comparison among colour morphs maintained under identical conditions suggested that females belonging to certain morphs produce relatively large clutches at the expense of fewer clutches per unit time. However, experimental data revealed no difference in relative fat content between dark and pale individuals maintained either in sun-exposed outdoor enclosures (where they were unable to increase their body temperature by basking) or in shaded enclosures. This suggest that the divergence in life history strategies among colour morphs may reflect a response to morph-specific differences in adult survival imposed by visually searching predators, rather than being due to the effects of differences in body temperature.  相似文献   

10.
Recent comparative studies point to the importance of mortality schedules as determinants in the evolution of life-history characteristics. In this paper, we compare patterns of mortality from natural populations of mammals with a variety of life histories. We find that, after removing the effects of body weight, mortality is the best predictor of variation in life-history traits. Mammals with high levels of natural mortality tend to mature early and give birth to small offspring in large litters after a short gestation, before and after body size effects are factored out. We examine the way in which life-history traits relate to juvenile mortality versus adult mortality and find that juvenile mortality is more highly correlated with life-history traits than is adult mortality. We discuss the necessity of distinguishing between extrinsic sources of mortality (e.g. predation) and mortality caused by intrinsic sources (e.g. costs of reproduction), and the role that ecology might play in the evolution of patterns of mortality and fecundity. We conclude that these results must be explained not simply in the light of the demographic necessity of balancing mortality and fecundity, but as a result of age-specific costs and benefits of reproduction and parental investment. Detailed comparative studies of mortality patterns in natural populations of mammals offer a promising avenue towards understanding the evolution of life-history strategies.  相似文献   

11.
In heterogeneous environments, selection on life-history traits and flowering time may vary considerably among populations because of differences in the extent to which mortality is related to age or size, and because of differences in the seasonal patterns of resource availability and intensity of biotic interactions. Spatial variation in optimal reproductive effort and flowering time may result in the evolution of genetic differences in life-history traits, but also in the evolution of adaptive phenotypic plasticity. The perennial herb Primula farinosa occurs at sites that differ widely in soil depth and therefore in water-holding capacity, vegetation cover, and frost-induced soil movement in winter. We used data from eight natural populations and a common-garden experiment to test the predictions that reproductive allocation is negatively correlated with soil depth while age at first reproduction and first flowering date among reproductive individuals are positively correlated with soil depth. In the common-garden experiment, maternal families collected in the field were grown from seed and monitored for 5 years. In the field, reproductive effort (number of flowers in relation to rosette area) varied among populations and was negatively related to soil depth. In the common-garden experiment, among-population differences in age at first reproduction, and reproductive effort were statistically significant, but relatively small and not correlated with soil depth at the site of origin. Flowering time varied considerably among populations, but was not related to soil depth at the site of origin. Taken together, the results suggest that among-population variation in reproductive effort observed in the field largely reflects phenotypic plasticity. They further suggest that among-population differentiation in flowering time cannot be attributed to variation in environmental factors correlated with soil depth.  相似文献   

12.
We study the influence of mate availability on the mating behavior of the self-fertile, preferentially outcrossing freshwater snail Physa acuta. Previous optimization theory indicated that mating system interacts with life-history traits to influence the age at first reproduction, providing three testable predictions. First, isolated individuals should reproduce later than individuals with available mates in the expectancy of finding a partner and avoiding the cost of inbreeding. Second, resource reallocation to future fecundity is needed for such reproductive delays to evolve. Third, the reproductive delay can be optimized with respect to life-history traits (e.g., survival, growth) and the mating system (inbreeding depression). Our results largely validate these predictions. First, reproduction is significantly delayed in isolated individuals ("selfers") as compared with individuals frequently exposed to mates ("outcrossers"). Second, delayed reproduction is associated with reallocation to future growth, survival, and fecundity, although fecundity is also affected by the mating system (selfing vs. outcrossing). Third, the reproductive delay found (approximately 2 wk) is consistent with quantitative predictions from optimization models. The delay is largely heritable, which might be partly explained by among-family differences in the amount of inbreeding depression (mating system) but not growth or survival.  相似文献   

13.
In anuran amphibians, age- and size-related life-history traits vary along latitudinal and altiudinal gradients. In the present study, we tested the hypothesis that altitudinal and latitudinal effects cause similar responses by assessing demographic life-history traits in nine Bufo calamita populations inhabiting elevations from sea level to 2270 m. Skeletochronologically determined age at maturity and longevity increased at elevations exceeding 2000 m, but female potential reproductive lifespan (PRLS) did not increase with altitude, as it did with latitude. Integrating the available evidence, it was found that lifetime fecundity of natterjacks decreased at the upper altitudinal range because PRLS was about the same as in lowland populations but females were smaller. In contrast, small size of northern females was compensated for by increased PRLS which minimised latitudinal variation of lifetime fecundity. Thus, this study provides evidence that altitudinal effects on life-history traits do not mimic latitudinal effects. Life-history trait variation along the altitudinal gradient seems to respond directly to the shortening of the annual activity period. As there is no evidence for increasing mortality in highland populations, reduced lifetime fecundity may be the ultimate reason for the natterjacks' inability to colonise elevations exceeding 2500 m.  相似文献   

14.
Environmental variation connected with seasonality is likely to affect the evolution of life-history strategies in ectotherms, but there is no consensus as to how important life-history traits like body size are influenced by environmental variation along seasonal gradients. We compared adult body size, skeletal growth, mean age, age at first reproduction and longevity among 11 common frog (Rana temporaria) populations sampled along a 1,600-km-long latitudinal gradient across Scandinavia. Mean age, age at first reproduction and longevity increased linearly with decreasing growth season length. Lifetime activity (i.e. the estimated number of active days during life-time) was highest at mid-latitudes and females had on average more active days throughout their lives than males. Variation in body size was due to differences in lifetime activity among populations??individuals (especially females) were largest where they had the longest cumulative activity period??as well as to differences between populations in skeletal growth rate as determined by skeletochronological analyses. Especially, males grew faster at intermediate latitudes. While life-history trait variation was strongly associated with latitude, the direction and shape of these relationships were sex- and trait-specific. These context-dependent relationships may be the result of life-history trade-offs enforced by differences in future reproductive opportunities and time constraints among the populations. Thus, seasonality appears to be an important environmental factor shaping life-history trait variation in common frogs.  相似文献   

15.
Populations of Acanthoscelides obtectus were maintained for 7 generations in either low- or high-larval densities in order to examine whether weevils life-history traits are modified in the direction predicted by r/K-selection theory. We found that r-selected population had a higher total fecundity, earlier age at first and last reproduction, and higher intrinsic rate of growth than K-selected population. Contrary to the theory, we have no evidence that preadult developmental time and adult longevity have been molded by density-dependent selection. The analysis of genetic variation of the weevils life-history traits in responses to different larval densities in both r- and K-selection populations indicates that different set of genes determining performance in two densities of analysed fecundity indices were accumulated during the course of the r- and K-selection.  相似文献   

16.

Background and Aims

The study of local adaptation in plant reproductive traits has received substantial attention in short-lived species, but studies conducted on forest trees are scarce. This lack of research on long-lived species represents an important gap in our knowledge, because inferences about selection on the reproduction and life history of short-lived species cannot necessarily be extrapolated to trees. This study considers whether the size for first reproduction is locally adapted across a broad geographical range of the Mediterranean conifer species Pinus pinaster. In particular, the study investigates whether this monoecious species varies genetically among populations in terms of whether individuals start to reproduce through their male function, their female function or both sexual functions simultaneously. Whether differences among populations could be attributed to local adaptation across a climatic gradient is then considered.

Methods

Male and female reproduction and growth were measured during early stages of sexual maturity of a P. pinaster common garden comprising 23 populations sampled across the species range. Generalized linear mixed models were used to assess genetic variability of early reproductive life-history traits. Environmental correlations with reproductive life-history traits were tested after controlling for neutral genetic structure provided by 12 nuclear simple sequence repeat markers.

Key Results

Trees tended to reproduce first through their male function, at a size (height) that varied little among source populations. The transition to female reproduction was slower, showed higher levels of variability and was negatively correlated with vegetative growth traits. Several female reproductive traits were correlated with a gradient of growth conditions, even after accounting for neutral genetic structure, with populations from more unfavourable sites tending to commence female reproduction at a lower individual size.

Conclusions

The study represents the first report of genetic variability among populations for differences in the threshold size for first reproduction between male and female sexual functions in a tree species. The relatively uniform size at which individuals begin reproducing through their male function probably represents the fact that pollen dispersal is also relatively invariant among sites. However, the genetic variability in the timing of female reproduction probably reflects environment-dependent costs of cone production. The results also suggest that early sex allocation in this species might evolve under constraints that do not apply to other conifers.  相似文献   

17.
Research on life-history traits of squamate reptiles has focused on North American species, while Asian taxa have been virtually ignored. In order to understand general patterns in reptile life histories, we need a broader data base. Our study on the slender-bodied lacertid lizard Takydromus septentrionalis provides the first detailed information on factors responsible for intraspecific variation in reproductive output and life history in a Chinese reptile. Clutches of recently collected lizards from five widely separated localities in China revealed major divergences in female body size at maturation, mean adult female body size, body condition after oviposition, size-adjusted fecundity, relative clutch mass, and mass and shape of eggs. Most of these geographical differences persisted when the same groups of females were maintained in identical conditions in captivity. Additionally, reproductive frequency during maintenance under laboratory conditions differed according to the animals' place of origin. Thus, the extensive geographical variation in reproductive and life-history traits that occurs within T. septentrionalis is exhibited even in long-term captives, suggesting that proximate factors that vary among localities (local conditions of weather and food supply) are less important determinants of life-history variation than are intrinsic (presumably genetic) influences. The maternal abdominal volume available to hold the clutch may be one such factor, based on low levels of variation in Relative Clutch Mass among populations, and geographical variation in the position of trade-off lines linking offspring size to fecundity.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 85 , 443–453.  相似文献   

18.
Latitudinal clines are widespread in Drosophila melanogaster, and many have been interpreted as adaptive responses to climatic variation. However, the selective mechanisms generating many such patterns remain unresolved, and there is relatively little information regarding how basic life-history components such as fecundity, life span and mortality rates vary across environmental gradients. Here, it is shown that four life-history traits vary predictably with geographic origin of populations sampled along the latitudinal gradient in the eastern United States. Although such patterns are indicative of selection, they cannot distinguish between the direct action of selection on the traits in question or indirect selection by means of underlying genetic correlations. When independent suites of traits covary with geography, it is therefore critical to separate the widespread effects of population source from variation specifically for the traits under investigation. One trait that is associated with variation in life histories and also varies with latitude is the propensity to express reproductive diapause; diapause expression has been hypothesized as a mechanism by which D. melanogaster adults overwinter, and as such may be subject to strong selection in temperate habitats. In this study, recently derived isofemale lines were used to assess the relative contributions of population source and diapause genotype in generating the observed variance for life histories. It is shown that although life span, fecundity and mortality rates varied predictably with geography, diapause genotype explained the majority of the variance for these traits in the sampled populations. Both heat and cold shock resistance were also observed to vary predictably with latitude for the sampled populations. Cold shock tolerance varied between diapause genotypes and the magnitude of this difference varied with geography, whereas heat shock tolerance was affected solely by geographic origin of the populations. These data suggest that a subset of life-history parameters is significantly influenced by the genetic variance for diapause expression in natural populations, and that the observed variance for longevity and fecundity profiles may reflect indirect action of selection on diapause and other correlated traits.  相似文献   

19.
What is the relationship between reproduction and longevity? Evolutionary biology suggests that reproduction exacts a cost in somatic maintenance, a cost that reduces longevity. The frequent occurrence of this tradeoff between life span and fecundity, both due to experimental manipulations as well as natural variation, suggest that the mechanism might be conserved during evolution. Until recently, little was known about the mechanistic details of how reproduction might regulate life span. Here we discuss recent advances in our understanding of the regulation of life span by reproductive signaling, focusing on studies using Caenorhabditis elegans.  相似文献   

20.
Life-history theory predicts that resource scarcity constrains individual optimal reproductive strategies and shapes the evolution of life-history traits. In species where the inherited structure of social class may lead to consistent resource differences among family lines, between-class variation in resource availability should select for divergence in optimal reproductive strategies. Evaluating this prediction requires information on the phenotypic selection and quantitative genetics of life-history trait variation in relation to individual lifetime access to resources. Here, we show using path analysis how resource availability, measured as the wealth class of the family, affected the opportunity and intensity of phenotypic selection on the key life-history traits of women living in pre-industrial Finland during the 1800s and 1900s. We found the highest opportunity for total selection and the strongest selection on earlier age at first reproduction in women of the poorest wealth class, whereas selection favoured older age at reproductive cessation in mothers of the wealthier classes. We also found clear differences in female life-history traits across wealth classes: the poorest women had the lowest age-specific survival throughout their lives, they started reproduction later, delivered fewer offspring during their lifetime, ceased reproduction younger, had poorer offspring survival to adulthood and, hence, had lower fitness compared to the wealthier women. Our results show that the amount of wealth affected the selection pressure on female life-history in a pre-industrial human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号