首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Janáek 《Photosynthetica》1997,34(3):473-476
A water stress effect on photosynthesis and transpiration of wheat seedlings at 50-500 µmol(CO2) mol-1 was measured in an open gas exchange system. The limitation of photosynthesis by stomatal conductance was quantified by a stomatal control coefficient of the net photosynthetic rate. The stomatal control coefficient increased linearly as the water potential of root media decreased to -1 MPa, and it decreased with increasing CO2 concentration.  相似文献   

2.
The net photosynthetic rate (PN), stomatal conductance (gs) and transpiration (E) ofHardwickia binata Roxb. leaves were reduced due to decrease in the leaf water potential (ψw) from -2.0 to - 5.7 MPa. PN partially recovered in the treated plants upon rewatering. Decrease in gs due to water stress may be the main factor for reduction of PN. This work was supported by a financial grant from the MNES, India to KP.  相似文献   

3.
The responses of water relations, stomatal conductance (gs) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the water evapotranspirated by the plant the preceding day. Well-watered plants received 100 % of the water evapotranspirated. Two weeks before starting the drought period, the plants were fertilised with Hoagland’s solution with 14, 60 and 110 mM NO3 (N14, N60 and N110, respectively). Plants of the N110 treatment had the highest leaf area. However, gs was higher for N60 plants and lower for N110 plants. At the end of the drought period, N60 plants showed the lowest values of water potential (Ψw) and osmotic potential (Ψs), and the highest values of pressure potential (Ψp). N60 plants showed the highest Ψs at maximum Ψp and the highest bulk modulus of elasticity.  相似文献   

4.
Central paradigms of ecophysiology are that there are recognizable and even explicit and predictable patterns among species, genera, and life forms in the economics of water and nitrogen use in photosynthesis and in carbon isotope discrimination (delta). However most previous examinations have implicitly assumed an infinite internal conductance (gi) and/or that internal conductance scales with the biochemical capacity for photosynthesis. Examination of published data for 54 species and a detailed examination for three well-characterized species--Eucalyptus globulus, Pseudotsuga menziesii and Phaseolus vulgaris--show these assumptions to be incorrect. The reduction in concentration of CO2 between the substomatal cavity (Ci) and the site of carbon fixation (Cc) varies greatly among species. Photosynthesis does not scale perfectly with gi and there is a general trend for plants with low gi to have a larger draw-down from Ci to Cc, further confounding efforts to scale photosynthesis and other attributes with gi. Variation in the gi-photosynthesis relationship contributes to variation in photosynthetic 'use' efficiency of N (PNUE) and water (WUE). Delta is an information-rich signal, but for many species only about two-thirds of this information relates to A/gs with the remaining one-third related to A/gi. Using data for three well-studied species we demonstrate that at common WUE, delta may vary by up to 3 per thousand. This is as large or larger than is commonly reported in many interspecific comparisons of delta, and adds to previous warnings about simplistic interpretations of WUE based on delta. A priority for future research should be elucidation of relationships between gi and gs and how these vary in response to environmental conditions (e.g. soil water, leaf-to-air vapour pressure deficit, temperature) and among species.  相似文献   

5.
Water relations of Capsicum genotypes under water stress   总被引:1,自引:0,他引:1  
Pepper species and cultivars, Capsicum annuum cv. Bell Boy, C. annuum cv. Kulai and C. frutescens cv. Padi, differing in drought tolerance were investigated for their water relations, stomatal responses and abscisic acid (ABA) content during water stress. C. frutescens cv. Padi exhibited a greater osmotic adjustment than C. annuum cultivars. Stomatal conductance of cv. Bell Boy was more sensitive to water stress than that of cvs. Kulai and Padi. In all pepper genotypes, stomatal closure was triggered in the absence of a large decrease in leaf water status. ABA content in xylem sap and leaf was higher in C. annum cultivars compared to C. frutescens cv. Padi. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Large underestimates of the limitation to photosynthesis imposed by stomata can occur because of an error in the standard method of calculating average substomatal pressures of carbon dioxide when heterogeneity of those pressures occurs across a leaf surface. Most gas exchange data supposedly indicating nonstomatal inhibition of photosynthesis by water stress could have this error. However, if no stomatal closure occurs, any reduction in photosynthesis must be due to nonstomatal inhibition of photosynthesis. Net carbon dioxide exchange rates and conductances to water vapor were measured under field conditions in upper canopy leaves of tomato plants during two summers in Beltsville, Maryland, USA. Comparisons were made near midday at high irradiance between leaflets in air with the ambient water vapor content and in air with a higher water content. The higher water content, which lowered the leaf to air water vapor pressure difference (VPD), was imposed either one half hour or several hours before measurements of gas exchange. In both seasons, and irrespective of the timing of the imposition of different VPDs, net photosynthesis increased 60% after decreasing the VPD from 3 to 1 kPa. There were no differences in leaf conductance between leaves at different VPDs, thus transpiration rates were threefold higher at 3 than at 1 kPa VPD. It is concluded that nonstomatal inhibition of photosynthesis did occur in these leaves at high transpiration rate.  相似文献   

7.
Hydroponically grown cucumber plants were exposed to 14-d period of salinity (0, 50, 100 mM NaCl). NaCl caused reduction in the relative water content in the leaves. The Na+ content increased and the K+ content decreased. The net photosynthetic rate, stomatal conductance and transpiration rate were markedly decreased by all of the salt treatments. Salinity decreased also the maximum quantum efficiency of photosystem 2 (PS 2) determined as the variable to maximum fluorescence ratio, the photochemical quantum yield of PS 2 and the photochemical fluorescence quenching, while the non-photochemical quenching increased. Above results indicate that NaCl affects photosynthesis through both stomata closure and non-stomatal factors.  相似文献   

8.
9.
The control of stomata by water balance   总被引:26,自引:0,他引:26  
It is clear that stomata play a critical role in regulating water loss from terrestrial vegetation. What is not clear is how this regulation is achieved. Stomata appear to respond to perturbations of many aspects of the soil-plant-atmosphere hydraulic continuum, but there is little agreement regarding the mechanism (or mechanisms) by which stomata sense such perturbations. This review discusses feedback and feedforward mechanisms by which hydraulic perturbations are putatively transduced into stomatal movements, in relation to generic empirical features of those responses. It is argued that a metabolically mediated feedback response of stomatal guard cells to the water status in their immediate vicinity ('hydro-active local feedback') remains the best explanation for many well-known features of hydraulically related stomatal behaviour, such as transient 'wrong-way' responses and the equivalence of hydraulic supply and demand as stomatal effectors. Furthermore, many curious phenomena that appear inconsistent with feedback, such as 'apparent feedforward' humidity responses and 'isohydric' behaviour (water potential homeostasis), are in fact expected to emerge from the juxtaposition of hydro-active local feedback and the well-known hysteretic and threshold-like effect of water potential on xylem hydraulic resistance.  相似文献   

10.
Thirty-day-old seedlings of two jute species (Corchorus capsularis L. cv. JRC 212 and C. olitorius L. cv. JRO 632) were subjected to short-term salinity stress (160 and 200 mM NaCl for 1 and 2 d). Relative water content, leaf water potential, water uptake, transpiration rate, water retention, stomatal conductance, net photosynthetic rate and water use efficiency of both jute species decreased due to salinity stress. The decrease was greater in C. olitorius than in C. capsularis and with higher magnitude of stress. Greater accumulation of Na+ and Cl- and a lower ratio of K+/Na+ in the root and shoot of C. olitorius compared with C. capsularis were also recorded. Pretreatment of seedlings with kinetin (0.09 mM), glutamic acid (4 mM) and calcium nitrate (5 mM) for 24 h significantly improved net photosynthesis, transpiration and water use efficiency of salinity stressed plants, the effect being more marked in C. olitorius. Among the pre-treatment chemicals, calcium nitrate was most effective. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Potassium deficient (−K) and potassium sufficient (+K) plants were exposed to four days of water stress. Well watered −K and +K plants had comparable rates of transpiration. But +K plants had a larger leaf area and depleted the soil moisture to a greater extent on day 1 of stress. For days 2 and 3 their transpiration rate, leaf water potential and relative water content fell below those of −K plants. Well watered −K plants had a significantly lower rate of photosynthesis than +K plants. Photosynthesis of −K plants was more sensitive to reduction in plant water potential than that of +K plants. Reduction of photosythesis in −K leaves was due to impairment of photosynthetic capacity and not to stomatal closure. Growth was significantly reduced in −K plants.  相似文献   

12.
Co-ordination of vapour and liquid phase water transport properties in plants   总被引:26,自引:7,他引:19  
The pathway for water movement from the soil through plants to the atmosphere can be represented by a series of liquid and vapour phase resistances. Stomatal regulation of vapour phase resistance balances transpiration with the efficiency of water supply to the leaves, avoiding leaf desiccation at one extreme, and unnecessary restriction of carbon dioxide uptake at the other. In addition to maintaining a long-term balance between vapour and liquid phase water transport resistances in plants, stomata are exquisitely sensitive to short-term, dynamic perturbations of liquid water transport. In balancing vapour and liquid phase water transport, stomata do not seem to distinguish among potential sources of variation in the apparent efficiency of delivery of water per guard cell complex. Therefore, an apparent soil-to-leaf hydraulic conductance based on relationships between liquid water fluxes and driving forces in situ seems to be the most versatile for interpretation of stomatal regulatory behaviour that achieves relative homeostasis of leaf water status in intact plants. Components of dynamic variation in apparent hydraulic conductance in intact plants include, exchange of water between the transpiration stream and internal storage compartments via capacitive discharge and recharge, cavitation and its reversal, temperature-induced changes in the viscosity of water, direct effects of xylem sap composition on xylem hydraulic properties, and endogenous and environmentally induced variation in the activity of membrane water channels in the hydraulic pathway. Stomatal responses to humidity must also be considered in interpreting co-ordination of vapour and liquid phase water transport because homeostasis of bulk leaf water status can only be achieved through regulation of the actual transpirational flux. Results of studies conducted with multiple species point to considerable convergence with regard to co-ordination of stomatal and hydraulic properties. Because stomata apparently sense and respond to integrated and dynamic soil-to-leaf water transport properties, studies involving intact plants under both natural and controlled conditions are likely to yield the most useful new insights concerning stomatal co-ordination of transpiration with soil and plant hydraulic properties.  相似文献   

13.
A coupled model of stomatal conductance, photosynthesis and transpiration   总被引:17,自引:1,他引:17  
A model that couples stomatal conductance, photosynthesis, leaf energy balance and transport of water through the soil–plant–atmosphere continuum is presented. Stomatal conductance in the model depends on light, temperature and intercellular CO2 concentration via photosynthesis and on leaf water potential, which in turn is a function of soil water potential, the rate of water flow through the soil and plant, and on xylem hydraulic resistance. Water transport from soil to roots is simulated through solution of Richards’ equation. The model captures the observed hysteresis in diurnal variations in stomatal conductance, assimilation rate and transpiration for plant canopies. Hysteresis arises because atmospheric demand for water from the leaves typically peaks in mid‐afternoon and because of uneven distribution of soil matric potentials with distance from the roots. Potentials at the root surfaces are lower than in the bulk soil, and once soil water supply starts to limit transpiration, root potentials are substantially less negative in the morning than in the afternoon. This leads to higher stomatal conductances, CO2 assimilation and transpiration in the morning compared to later in the day. Stomatal conductance is sensitive to soil and plant hydraulic properties and to root length density only after approximately 10 d of soil drying, when supply of water by the soil to the roots becomes limiting. High atmospheric demand causes transpiration rates, LE, to decline at a slightly higher soil water content, θs, than at low atmospheric demand, but all curves of LE versus θs fall on the same line when soil water supply limits transpiration. Stomatal conductance cannot be modelled in isolation, but must be fully coupled with models of photosynthesis/respiration and the transport of water from soil, through roots, stems and leaves to the atmosphere.  相似文献   

14.
Decreased hydraulic conductance in plants at elevated carbon dioxide   总被引:3,自引:2,他引:1  
Previous work indicated that long-term exposure to elevated carbon dioxide levels can reduce hydraulic conductance in some species, but the basis of the response was not determined. In this study, hydraulic conductance was measured at concentrations of both 350 and 700 cm3 m–3 carbon dioxide for plants grown at both concentrations, to determine the reversibility of the response. In Zea mays and Amaranthus hypochondriacus , exposure to the higher carbon dioxide concentration for several hours reduced whole-plant transpiration rate by 22–40%, without any consistent change in leaf water potential, indicating reversible reductions in hydraulic conductance at elevated carbon dioxide levels. Hydraulic conductance in these species grown at both carbon dioxide concentrations responded similarly to measurement concentration of carbon dioxide, indicating that the response was reversible. In Glycine max , which in earlier work had shown a long-term decrease in hydraulic conductance at elevated carbon dioxide levels, and in Abutilon theophrasti , no short-term changes in hydraulic conductance with measurement concentration of carbon dioxide were found, despite lower transpiration rates at elevated carbon dioxide. In G. max and Medicago sativa , growth at high dew-point temperature reduced transpiration rate and decreased hydraulic conductance. The results indicate that both reversible and irreversible decreases in hydraulic conductance can occur at elevated carbon dioxide concentrations, and that both could be responses to reduced transpiration rate, rather than to carbon dioxide concentration itself.  相似文献   

15.
Responses of abaxial and adaxial stomata of Populus trichocarpa Torr. & Gray. × P. deltoides Bartr. (ex Marsh.) cv. Unal to incident light, sudden darkening and leaf excision in the light and in the dark were studied on 5-year-old trees in the field using diffusion porometry. Stomatal closure in the dark was found to be incomplete in most cases studies. Stomata closed after leaf excision in the dark within 90 min. Stomatal closure after darkening of an entire tree or an entire branch (white the rest of the tree was in the light) was slower, and complete stomatal closure was noticed only for adaxial stomata after 3 h. Adaxial stomata were more reactive and sensitive than abaxial stomata to sudden darkening and leaf excision in the light and the dark. In all treatments, stomatal response was more responsive in mature leaves than in young, still expanding leaves.  相似文献   

16.
17.
Long-term exposure of plants to elevated [CO2] leads to a number of growth and physiological effects, many of which are interpreted in the context of ameliorating the negative impacts of drought. However, despite considerable study, a clear picture in terms of the influence of elevated [CO2] on plant water relations and the role that these effects play in determining the response of plants to elevated [CO2] under water-limited conditions has been slow to emerge. In this paper, four areas of research are examined that represent critical, yet uncertain, themes related to the response of plants to elevated [CO2] and drought. These include (1) fine-root proliferation and implications for whole-plant water uptake; (2) enhanced water-use efficiency and consequences for drought tolerance; (3) reductions in stomatal conductance and impacts on leaf water potential; and (4) solute accumulation, osmotic adjustment and dehydration tolerance of leaves. A survey of the literature indicates that the growth of plants at elevated [CO2] can lead to conditions whereby plants maintain higher (less negative) leaf water potentials. The mechanisms that contribute to this effect are not fully known, although CO2-induced reductions in stomatal conductance, increases in whole-plant hydraulic conductance and osmotic adjustment may be important. Less understood are the interactive effects of elevated [CO2] and drought on fine-root production and water-use efficiency, and the contribution of these processes to plant growth in water-limited environments. Increases in water-use efficiency and reductions in water use can contribute to enhanced soil water content under elevated [CO2]. Herbaceous crops and grasslands are most responsive in this regard. The conservation of soil water at elevated [CO2] in other systems has been less studied, but in terms of maintaining growth or carbon gain during drought, the benefits of CO2-induced improvements in soil water content appear relatively minor. Nonetheless, because even small effects of elevated [CO2] on plant and soil water relations can have important implications for ecosystems, we conclude that this area of research deserves continued investigation. Future studies that focus on cellular mechanisms of plant response to elevated [CO2] and drought are needed, as are whole-plant investigations that emphasize the integration of processes throughout the soil--plant--atmosphere continuum. We suggest that the hydraulic principles that govern water transport provide an integrating framework that would allow CO2-induced changes in stomatal conductance, leaf water potential, root growth and other processes to be uniquely evaluated within the context of whole-plant hydraulic conductance and water transport efficiency.  相似文献   

18.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

19.
Water and osmotic potentials were measured in leaves of a drought-sensitive ('Ponca') and a drought-resistant ('KanKing') cultivar of winter wheat ( Triticum aestivum L . em. Thell.) to determine if the potentials of the drought-sensitive cultivar could be made similar to those of the drought-resistant cultivar through application of abscisic acid (ABA). Stomatal resistance was also measured. Plants were sprayed with ABA and grown in soil, which was watered or allowed to dry. In well-watered plants, ABA closed the stomata of both cultivars. Stomatal resistance of plants grown without added water and with ABA was less than that of plants grown without added water and without ABA. Under ample water supply, ABA decreased water and osmotic potentials of the drought-sensitive cultivar (Ponca), but had no effect on these potentials in the drought-resistant cultivar (KanKing). Under water-deprived conditions, ABA increased water and osmotic potentials of Ponca, but did not change these potentials in KanKing. The overall effect of ABA was to decrease the differences in the water and osmotic potentials between the two cultivars.  相似文献   

20.
Abstract. Seedlings of Eucalyptus pauciflora Sieb. ex. Spreng. were stressed by withholding water. They were then rewatered, and the time course of recovery of photosynthesis was followed. Recovery always followed a distinct bi-phasic pattern. A first, rapid, stage of recovery commenced between 5 and 60 min after rewatering and was completed by between 30 min and four h after rewatering. Recovery in this stage always involved concurrent increases in stomatal conductance and the leaf's capacity to assimilate CO2 at any intercellular partial pressure of CO2 [ A(pi) relationship]. This stage of rapid recovery was followed either by a constant or gradually declining rate of photosynthesis for the remainder of the light period. In plants kept to a normal diurnal cycle, a second stage of recovery occurred and was completed during the night following rewatering. In this second stage of recovery, the A(Pi) relationship recovered to 90–100% of prestress values. In contrast, the recovery of stomatal conductance was not complete by the first day after rewatering. In darkness, complete recovery of the A(pi) relationship required as little as five h. If plants were kept in continuous high light, then between six and 16 h elapsed after rewatering before the second stage of recovery commenced. After this lag, almost complete recovery of the A(pi) relationship was possible. These results indicate that water stress has two independent and parallel effects on the mesophyll capacity for photosynthesis. The first may be simply reversible when the plant is rewatered, while the second may involve damage to the photosynthetic machinery that requires protein synthesis for its reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号