首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In polluted soil or ground water, inorganic nutrients such as nitrogen may be limiting, so that Monod kinetics for carbon limitation may not describe microbial growth and contaminant biodegradation rates. To test this hypothesis we measured14CO2 evolved by a pure culture ofAcinetobacter johnsonii degrading 120 µg14C-phenol per ml in saturated sand with molar carbon:nitrogen (CN) ratios ranging from 1.5 to 560. We fit kinetics models to the data using non-linear least squares regression. Phenol disappearance and population growth were also measured at CN1.5 and CN560.After a 5- to 10-hour lag period, most of the14CO2 evolution curves at all CN ratios displayed a sigmoidal shape, suggesting that the microbial populations grew. As CN ratio increased, the initial rate of14CO2 evolution decreased. Cell growth and phenol consumption occurred at both CN1.5 and CN560, and showed the same trends as the14CO2 data. A kinetics model assuming population growth limited by a single substrate best fit the14CO2 evolution data for CN1.5. At intermediate to high CN ratios, the data were best fit by a model originally formulated to describe no-growth metabolism of one substrate coupled with microbial growth on a second substrate. We suggest that this dual-substrate model describes linear growth on phenol while nitrogen is available and first-order metabolism of phenol without growth after nitrogen is depleted.  相似文献   

2.
The effect of increased salinity on photosynthesis was studied in leaves of Plantago maritima L. that developed while plants were at low and high NaCl levels. In leaves that developed while plants were grown at 50 mol·m-3, exposure to 200 and 350 mol·m-3 NaCl resulted in reductions in net CO2 assimilation and stomatal conductance. The decline in CO2 assimilation in plants at 200 and 350 mol·m-3 NaCl occurred almost exclusively at high intercellular CO2 concentrations. The initial slope of the CO2 assimilation-intercellular CO2 (A-C i) curve, determined after salinity was increased, was identical or very similar to that measured initially. In contrast to the reductions observed in CO2 assimilation, there were no significant differences in O2 evolution rates measured at 5% CO2 among leaves from plants exposed to higher salinity and plants remaining at low salinity.Leaves that developed while plants were at increased salinity levels also had significantly lower net CO2 assimilation rates than plants remaining at 50 mol·m-3 NaCl. The lower CO2 assimilation rates in plants grown at 200 and 350 mol·m-3 NaCl were a result of reduced stomatal conductance and low intercellular CO2 concentration. There were no significant differences among treatments for O2 evolution rates measured at high CO2 levels. The increased stomatal limitation of photosynthesis was confirmed by measurements of the 13C/12C composition of leaf tissue. Water-use efficiency was increased in the plants grown at high salinity.Abbreviations and symbols A net CO2 assimilation rate - C a ambient CO2 concentration - C i intercellular CO2 concentration - 13C isotopic ratio (13C/12C) expressed relative to a standard - RuBP ribulose-1,5-bisphosphate  相似文献   

3.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   

4.
Abstract. Seedlings of Pinus radiata D. Don were grown in growth chambers for 22 weeks with two levels of phosphorus, under either well-watered or water-stressed conditions at CO2 concentrations of either 330 or 660mm3 dm?3. Plant growth, water use efficiency and conductance were measured and the relationship between these and needle photosynthetic capacity, water use efficiency and conductance was determined by gas exchange at week 22. Phosphorus deficiency decreased growth and foliar surface area at both CO2concentrations; however, it only reduced the maximum photosynthetic rates of the needles at 660 mm3 CO2 dm?3 (plants grown and measured at the same CO2 concentration). Water stress reduced growth and foliar surface area at both CO2 concentrations. Increases in needle photosynthetic rates appeared to be partly responsible for the increased growth at high CO2 where phosphorus was adequate. This effect was amplified by accompanying increases in needle production. Phosphorus deficiency inhibited these responses because it severely impaired needle photosynthetic function. The relative increase in growth in response to high CO2 was higher in the periodically water-stressed plants. This was not due to the maintenance of cell volume during drought. Plant water use efficiency was increased by CO2 enrichment due to an increase in dry weight rather than a decrease in shoot conductance and, therefore, transpirational water loss. Changes in needle conductance and water use efficiency in response to high CO2 were generally in the same direction as those at the whole plant level. If the atmospheric CO2 level reaches the predicted concentration of 660 mm3 dm?3 by the end of next Century, then the growth of P. radiata will only be increased in areas where phosphorus nutrition is adequate. Growth will be increased in drought-affected regions but total water use is unlikely to be reduced.  相似文献   

5.
Light-activated hydrogen and oxygen evolution as a function of CO2 concentration in helium were measured for the unicellular green alga Chlamydomonas reinhardtii. The concentrations were 58, 30, 0.8 and 0 ppm CO2. The objective of these experiments was to study the differential affinity of CO2/HCO 3 - for their respective Photosystem II and Calvin cycle binding sites vis-à-vis photoevolution of molecular oxygen and the competitive pathways of hydrogen photoevolution and CO2 photoassimilation. The maximum rate of hydrogen evolution occurred at 0.8 ppm CO2, whereas the maximum rate of oxygen evolution occurred at 58 ppm CO2. The key result of this work is that the rate of photosynthetic hydrogen evolution can be increased by, at least partially, satisfying the Photosystem II CO2/HCO 3 - binding site requirement without fully activating the Calvin-Benson CO2 reduction pathway. Data are presented which plot the rates of hydrogen and oxygen evolution as functions of atmospheric CO2 concentration in helium and light intensity. The stoichiometric ratio of hydrogen to oxygen changed from 0.1 at 58 ppm to approximately 2.5 at 0.8 ppm. A discussion of partitioning of photosynthetic reductant between the hydrogen/hydrogenase and Calvin-Benson cycle pathways is presented.Abbreviations PET photosynthetic electron transport - PS Photosystem  相似文献   

6.
CO2exchange in the leafy and skeletal parts of attached shoots of Pinus sylvestrisL. was measured with an infrared gas-analyzer in an open differential system during daylight hours. The 14CO2assimilation rates in the leafy parts of shoots and 14CO2evolution from current photosynthetic products in the lower skeletal part of shoots were measured in afternoons. Chlorophyll content was measured in the needles of the same shoot. The carbon of exported assimilates contributed only about 4% to CO2exchange in the heterotrophic tree tissues. Only this component of CO2evolution from the surface of the skeletal part of the tree was related to the losses of the net primary photosynthetic production (NPP) in the aboveground part of the pine stand during the current growth period.  相似文献   

7.
Soil surface CO2 flux was measured in hollow and hummock microhabitats in a peatland in north central Minnesota from June to October in 1991. We used a closed infrared gas exchange system to measure soil CO2 flux. The rates of CO2 evolution from hummocks (9.8 ± 3.5 g m−2 d−1, [mean ± SE]) were consistently higher than those from hollows (5.4 ± 2.9 g m−2 d−1) (the hummock values included the contribution of moss dark respiration, which may account for 10–20% of the total measured flux). The soil CO2 flux was strongly temperature-dependent (Q10 ≈ 3.7) and appeared to be linearly related to changes in water table depth. An empirical multiplicative model, using peat temperature and water table depth as independent variables, explained about 81% of the variance in the CO2 flux data. Using the empirical model with measurements of peat temperature and estimates of hollow/hummock microtopographic distribution (relative to water table elevation), daily rates of “site-averaged” CO2 evolution were calculated. For the six-month period (May–October), the total soil CO2 released from this ecosystem was estimated to be about 1340 g CO2 m−2. Published as Paper No. 9950, Journal Series, Nebraska Agricultural Research Division, University of Nebraska, Lincoln, NE, USA.  相似文献   

8.
Photorespiration in Air and High CO(2)-Grown Chlorella pyrenoidosa   总被引:2,自引:2,他引:0       下载免费PDF全文
Shelp BJ  Canvin DT 《Plant physiology》1981,68(6):1500-1503
Oxygen inhibition of photosynthesis and CO2 evolution during photorespiration were compared in high CO2-grown and air-grown Chlorella pyrenoidosa, using the artificial leaf technique at pH 5.0. High CO2 cells, in contrast to air-grown cells, exhibited a marked inhibition of photosynthesis by O2, which appeared to be competitive and similar in magnitude to that in higher C3 plants. With increasing time after transfer to air, the photosynthetic rate in high CO2 cells increased while the O2 effect declined. Photorespiration, measured as the difference between 14CO2 and 12CO2 uptake, was much greater and sensitive to O2 in high CO2 cells. Some CO2 evolution was also present in air-grown algae; however, it did not appear to be sensitive to O2. True photosynthesis was not affected by O2 in either case. The data indicate that the difference between high CO2 and air-grown algae could be attributed to the magnitude of CO2 evolution. This conclusion is discussed with reference to the oxygenase reaction and the control of photorespiration in algae.  相似文献   

9.
Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Summary High concentration production of an extracellular enzyme, lipase, was achieved by a fed-batch culture of Pseudomonas fluorescens. During the cultivation, temperature, pH and dissolved oxygen concentration wwre maintained at 23°C, 6.5 and 2–5 ppm, respectively. Olive oil was used as a carbon source for microbial growth. To produce lipase effectively the specific feed rate of olive oil had to be maintained in a range of 0.04–0.06 (g oil) · (g dry cell)-1 · h-1. The CO2 evolution rate was monitored to estimate the requirement of olive oil. The ratio of feed rate of olive oil to the CO2 evolution rate was varied in the range of 20–60 g oil/mol CO2. The higher value of the ratio accelerated microbial growth, but did not favour lipase production. Once the high cell concentration of 60 g/l had been achieved, the ratio was changed from 50 to 30 g oil/mol CO2 to accelerate the lipase production. By this CO2-dependent method a very high activity of lipase, 1980 units/ml, was obtained. Both the productivity and yield of lipase were prominently increased compared with a conventional batch culture.  相似文献   

11.
A study was conducted in 21-year-old loblolly pine (Pinus taeda L.) trees growing in plantation in north central Georgia, USA. The experiment used branch chambers to impose treatments of ambient, ambient +165 and ambient + 330 μmol mol?1 CO2. After one growing season there was no indication of acclimation to elevated CO2. In August and September, carbon assimilation, measured by two different methods, was twice as high at ambient +330 μmol mol?1 CO2 than at ambient. Dark respiration was suppressed by 6% at ambient +165 and by 14% at ambient + 330 μmol mol?1 CO2. This suppression was immediate, and not an effect of exposure to elevated CO2 during growth, since respiration was reduced by the same amount in all treatments when measured at a high CO2 concentration. Elevated CO2 increased the growth of foliage and woody tissue. It also increased instantaneous transpiration efficiency, but it had no effect on stomatal conductance. Since the soil at the study site had low to moderate fertility, these results suggest that the growth potential of forests on many sites may be enhanced by global increases in atmospheric CO2, concentration.  相似文献   

12.
Oxygen and CO2 exchange were measured concurrently in leaves of shade-grownAlocasia macrorrhiza (L.) G. Don during lightflecks consisting of short periods of high photon flux density (PFD) superimposed on a low-PFD background illumination. Oxygen exchange was measured with a zirconium-oxide ceramic cell in an atmosphere containing 1 600 bar O2 and 350 bar CO2. Following an increase in PFD from 10 to 500 mol photons·m-2·s-1, O2 evolution immediately increased to a maximum rate that was about twice as high as the highest CO2-exchange rates that were observed. Oxygen evolution then decreased over the next 5–10 s to rates equal to the much more slowly increasing rates of CO2 uptake. When the PFD was decreased at the end of a lightfleck, O2 evolution decreased nearly instantaneously to the low-PFD rate while CO2 fixation continued at an elevated rate for about 20 s. When PFD during the lightfleck was at a level that was limiting for steady-state CO2 exchange, then the O2-evolution rate was constant during the lightfleck. This observed pattern of O2 evolution during lightflecks indicated that the maximum rate of electron transport exceeded the maximum rate of CO2 fixation in these leaves. In noninduced leaves, rates of O2 evolution for the first fraction of a second were about as high as rates in fully induced leaves, indicating that O2 evolution and the electron-transport chain are not directly affected by the leaf's induction state. Severalfold differences between induced and noninduced leaves in O2 evolution during a lightfleck were seen for lightflecks longer than a few seconds where the rate of O2 evolution appeared to be limited by the utilization of reducing power in CO2 fixation.Abbreviation PFD photon flux density (of photosynthetically active radiation)  相似文献   

13.
This paper reports for the first time upon the effects of increasing CO2 concentrations on a natural phytoplankton assemblage in a tropical estuary (the Godavari River Estuary in India). Two short-term (5-day) bottle experiments were conducted (with and without nutrient addition) during the pre-monsoon season when the partial pressure of CO2 in the surface water is quite low. The results reveal that the concentrations of total chlorophyll, the phytoplankton growth rate, the concentrations of particulate organic matter, the photosynthetic oxygen evolution rates, and the total bacterial count were higher under elevated CO2 treatments, as compared to ambient conditions (control). δ13C of particulate organic matter (POM) varied inversely with respect to CO2, indicating a clear signature of higher CO2 influx under the elevated CO2 levels. Whereas, δ13CPOM in the controls indicated the existence of an active bicarbonate transport system under limited CO2 supply. A considerable change in phytoplankton community structure was noticed, with marker pigment analysis by HPLC revealing that cyanobacteria were dominant over diatoms as CO2 concentrations increased. A mass balance calculation indicated that insufficient nutrients (N, P and Si) might have inhibited diatom growth compared to cyanobacteria, regardless of increased CO2 supply. The present study suggests that CO2 concentration and nutrient supply could have significant effects on phytoplankton physiology and community composition for natural phytoplankton communities in this region. However, this work was conducted during a non-discharge period (nutrient-limited conditions) and the responses of phytoplankton to increasing CO2 might not necessarily be the same during other seasons with high physicochemical variability. Further investigation is therefore needed.  相似文献   

14.
J. R. Evans  I. Jakobsen  E. Ögren 《Planta》1993,189(2):191-200
The shapes of photosynthetic light-response curves for leaves of Eucalyptus maculata (Hook) and E. pauciflora (Sieber ex Sprengel) were examined. Three different methods were used to measure photosynthesis: CO2 and H2O-vapour exchange, O2 evolution at a 5-kPa CO2 partial pressure, and chlorophyll fluorescence. The three methods were compared and gave good agreement when measured under equivalent conditions. However, O2 evolution was inhibited by high CO2 partial pressures. A non-rectangular hyperbolic curve has been used widely to describe photosynthetic light-response curves. It has three variables which define the maximum quantum yield (photosynthetic rate divided by absorbed irradiance at very low irradiances), the maximum capacity and the curvature (Θ). We found that Θ was affected by the CO2 partial pressure, declining to a minimum of about 0.6 as CO2 partial pressure increased to 100 Pa. Further increases in the CO2 partial pressure began to inhibit the rate of O2 evolution at 2000 μmol quanta · m?2·?1 and Θ increased back to 0.95 by 5 kPa CO2 partial pressure. At low irradiances, photosynthesis is limited by the rate of electron transport while at high irradiances, photosynthesis is frequently limited by the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). The dependence of Θ on CO2 partial pressure arises because the transition between limitations changes as a function of the CO2 partial pressure. The light-response curve is truncated by the transition to a Rubisco limitation and the lower the irradiance at the transition, the higher the value of Θ. There is a gradient in light absorption through the leaf which influences the photosynthetic capacity of different layers within the leaf. The gradient in photosynthetic capacity can be demonstrated by the fact that the shape of the light-response curve changes when the leaf is illuminated unilaterally onto either the adaxial or abaxial surface. We compared two Eucalyptus species which had either isolateral or dorsiventral leaf anatomy. Leaves were able to reverse completely the gradients in photosynthetic capacity following inversion of the leaves for a week, irrespective of their anatomy.  相似文献   

15.
It was hypothesized that high CO2 availability would increase monoterpene emission to the atmosphere. This hypothesis was based on resource allocation theory which predicts increased production of plant secondary compounds when carbon is in excess of that required for growth. Monoterpene emission rates were measured from needles of (a) Ponderosa pine grown at different CO2 concentrations and soil nitrogen levels, and (b) Douglas fir grown at different CO2 concentrations. Ponderosa pine grown at 700 μmol mol–1 CO2 exhibited increased photosynthetic rates and needle starch to nitrogen (N) ratios when compared to trees grown at 350 μmol mol–1 CO2. Nitrogen availability had no consistent effect on photosynthesis. Douglas fir grown at 550 μmol mol–1 CO2 exhibited increased photosynthetic rates as compared to growth at 350 μmol mol–1 CO2 in old, but not young needles, and there was no influence on the starch/N ratio. In neither species was there a significant effect of elevated growth CO2 on needle monoterpene concentration or emission rate. The influence of climate warming and leaf area index (LAI) on monoterpene emission were also investigated. Douglas fir grown at elevated CO2 plus a 4 °C increase in growth temperature exhibited no change in needle monoterpene concentration, despite a predicted 50% increase in emission rate. At elevated CO2 concentration the LAI increased in Ponderosa pine, but not Douglas fir. The combination of increased LAI and climate warming are predicted to cause an 80% increase in monoterpene emissions from Ponderosa pine forests and a 50% increase in emissions from Douglas fir forests. This study demonstrates that although growth at elevated CO2 may not affect the rate of monoterpene emission per unit biomass, the effect of elevated CO2 on LAI, and the effect of climate warming on monoterpene biosynthesis and volatilization, could increase canopy monoterpene emission rate.  相似文献   

16.
Wong  Suan-Chin 《Plant Ecology》1993,(1):211-221
Cotton plants (Gossypium hirsutum L. var Deltapine 90) and radish plants (Raphanus sativus L var Round Red) were grown under full sunlight using a factorial combination of atmospheric CO2 concentrations (350 µmol mol-1 and 700 µmol mol-1) and humidities (35% and 90% RH at 32 °C during the day). Cotton plants showed large responses to increased humidity and to doubled CO2. In cotton plants, the enhanced dry matter yield due to doubled CO2 concentration was 1.6-fold greater at low humidity than at high humidity. Apart from the direct effect of elevated CO2 level on photosynthesis, the greater effect of doubled CO2 concentration on dry matter yield at low humidity was probably due to: (1) increased leaf water potential caused by reduction of transpiration resulting from the negative CO2 response of stomata to increased CO2 concentration the consequence being greater leaf area expansion; (2) reduction of CO2 assimilation rate at low humidity and normal CO2 concentration as a result of humidity response of stomata causing reduction of intercellular CO2 concentration. In contrast, apart from the very early stage of development, radish plants do not respond to increased humidity but had a relatively large response to doubled CO2 concentration. Furthermore, due to the determinate growth pattern as well as having a prominent storage root, the extra photoassimilate derived at doubled CO2 level is allocated to the storage root.Abbreviatios DAE day after emergence - LAD leaf areal density (leaf dry weight/leaf area) - LAR leaf area ratio (leaf area/plant dry weight) - NAR net assimilation rate - ci internal CO2 concentration - PPFD photosynthetic photon flux density - RGR relative growth rate - RLAGR relative leaf area growth rate - VPD vapour pressure deficit  相似文献   

17.
In order to separate the net effect of growth at elevated [CO2] on stomatal conductance (gs) into direct and acclimatory responses, mid‐day values of gs were measured for plants grown in field plots in open‐topped chambers at the current ambient [CO2], which averaged 350 μmol mol?1 in the daytime, and at ambient + 350 μmol mol?1[CO2] for winter wheat, winter barley, potato and sorghum. The acclimatory response was determined by comparing gs measured at 700 μmol mol?1[CO2] for plants grown at the two [CO2]. The direct effect of increasing [CO2] from 350 to 700 μmol mol?1 was determined for plants grown at the lower concentration. Photosynthetic rates were measured concurrently with gs. For all species, growth at the higher [CO2] significantly reduced gs measured at 700 μmol mol?1[CO2]. The reduction in gs caused by growth at the higher [CO2] was larger for all species on days with low leaf to air water vapour pressure difference for a given temperature, which coincided with highest conductances and also the smallest direct effects of increased [CO2] on conductance. For barley, there was no other evidence for stomatal acclimation, despite consistent down‐regulation of photosynthetic rate in plants grown at the higher [CO2]. In wheat and potato, in addition to the vapour pressure difference interaction, the magnitude of stomatal acclimation varied directly in proportion to the magnitude of down‐regulation of photosynthetic rate through the season. In sorghum, gs consistently exhibited acclimation, but there was no down‐regulation of photosynthetic rate. In none of the species except barley was the direct effect the larger component of the net reduction in gs when averaged over measurement dates. The net effect of growth at elevated [CO2] on mid‐day gs resulted from unique combinations of direct and acclimatory responses in the various species.  相似文献   

18.
Walker  R.F.  Geisinger  D.R.  Johnson  D.W.  Ball  J.T. 《Plant and Soil》1997,195(1):25-36
Interactive effects of atmospheric CO2 enrichment and soil N fertility on above- and below-ground development and water relations of juvenile ponderosa pine (Pinus ponderosa Dougl. ex Laws.) were examined. Open-top field chambers permitted creation of atmospheres with 700 µL L-1, 525 µL L-1, or ambient CO2 concentrations. Seedlings were reared from seed in field soil with a total N concentration of approximately 900 µg g-1 or in soil amended with sufficient (NH4)2SO4 to increase total N by 100 µg g-1 or 200 µg g-1. The 525 µL L-1 CO2 treatment within the intermediate N treatment was excluded from the study. Following each of three consecutive growing seasons, whole seedlings of each combination of CO2 and N treatment were harvested to permit assessment of shoot and root growth and ectomycorrhizal colonization. In the second and third growing seasons, drought cycles were imposed by withholding irrigation during which predawn and midday xylem water potential and soil water potential were measured. The first harvest revealed that shoot weight and coarse and fine root weights were increased by growth in elevated CO2. Shoot and root volume and weights were increased by CO2 enrichment at the second harvest, but growth stimulation by the 525 µL L-1 CO2 concentration exceeded that in 700 µL L-1 CO2 during the first two growing seasons. At the third harvest, above- and below-ground growth increases were largely confined to the 700 µL L-1 CO2 treatment, an effect accentuated by high soil N but evident in all N treatments. Ectomycorrhizal formation was reduced by elevated CO2 after one growing season, but thereafter was not significantly affected by CO2 and was unaffected by soil N throughout the study. Results of the xylem water potential measurements were variable, as water potentials in seedlings grown in elevated CO2 were intermittently higher on some measurement days but lower on others than that of seedlings grown in the ambient atmosphere. These results suggest that elevated CO2 exerts stimulatory effects on shoot and root growth of juvenile ponderosa pine under field conditions which are somewhat dependent on N availability, but that temporal variation may periodically result in a greater response to a moderate rise in atmospheric CO2 than to a doubling of the current ambient concentration.  相似文献   

19.
Experiments were performed to determine if growth at elevated partial pressure of CO2 altered the sensitivity of leaf water vapour conductance and rate of CO2 assimilation to the leaf-to-air difference in the partial pressure of water vapour (Δw). Comparisons were made between plants grown and measured at 350 and 700 μPa Pa?1 partial pressures of CO2 for amaranth, soybean and sunflower grown in controlled environment chambers, soybean grown outdoors in pots, and orchard grass grown in field plots. In amaranth, soybean and orchard grass, both the absolute and the relative sensitivity of conductance to Δw at the leaf surface were less in plants grown and measured at the elevated CO2. In sunflower, there was no change in the sensitivity of conductance to Δw for the two CO2 partial pressures. Tests in soybeans and amaranth showed that the change in sensitivity resulted from elevated CO2 during the measurement of the Δw response. Assimilation rate of CO2 was not altered by Δw in amaranth, which has C4 metabolism. In sunflower, the assimilation rate of plants grown and measured at elevated CO2 was insensitive to Δw, consistent with the response of assimilation rate to intercellular CO2 partial pressure in the prevailing range. In soybean, the sensitivity of assimilation rate to Δw was not different between CO2 treatments, in contrast to what would be expected from the response of assimilation rate to intercellular CO2 partial pressure.  相似文献   

20.
Projected depletions in the stratospheric ozone layer will result in increases in solar ultraviolet-B radiation (290–320 nm) reaching the earth's surface, These increases will likely occur in concert with other environmental changes such as increases in atmospheric carbon dioxide concentrations. Currently very little information is available on the effectiveness of UV-B radiation within a CO2-enriched atmosphere, and this is especially true for trees. Loblolly pine (Pinus taeda L.) seedlings were grown in a factorial experiment at the Duke University Phytotron with either 0, 8.8 or 13.8 kJ m−2 of biologically effective UV-B radiation (UV-BBE). The CO2 concentrations used were 350 and 650 μmol mol−1. Measurements of chlorophyll fluorescence were made at 5-week intervals and photosynthetic oxygen evolution and leaf pigments were measured after 22 weeks, prior to harvest. The results of this study demonstrated a clear growth response to CO2 enrichment but neither photosynthetic capacity nor quantum efficiency were altered by CO2. The higher UV-B irradiance reduced total biomass by about 12% at both CO2 levels but biomass partitioning was altered by the interaction of CO2 and UV-B radiation. Dry matter was preferentially allocated to shoot components by UV-B radiation at 350 μmol mol−1 CO2 and towards root components at 650 μmol mol−1 CO2. These subtle effects on biomass allocation could be important in the future to seedling establishment and competitive interactions in natural as well as agricultural communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号