首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteases are enzymes produced by several filamentous fungi with important biotechnological applications. In this work, a protease from Aspergillus flavus was characterized. The culture filtrate of A. flavus was purified to homogeneity by Sephacryl S-200 column chromatography followed by CM–cellulose. The molecular weight of the purified enzyme was estimated to be approximately 32?kDa by SDS–PAGE. The enzyme hydrolysed BTpNA (N-α-benzoyl-dl-tyrosyl-p-nitroanilide), azo-casein and casein as substrates. Optimal temperature and pH were 55?°C and 6.5, respectively. The enzyme was stimulated by Mg2+, Ca2+, Zn2+ and inhibited by Hg2+ and Ag2+ and Cu2+. The protease showed increased activity with detergents, such as Tween 80 and Triton X, and was stable to the reducing agents, such as β-mercaptoethanol. The protease activity was strongly inhibited in the presence of phenylmethylsulfonyl fluoride, indicating it is a serine protease. The enzyme entrapped in calcium alginate beads retained its activity for longer time and could be reused up to 10 times. The thermostability was increased after the immobilization and the enzyme retained 100% of activity at 45?°C after 60?min of incubation, and 90% of residual activity at 50?°C after 30?min. In contrast, the free enzyme only retained 10% of its residual activity after 60?min at 50?°C. The enzymatic preparation was demonstrated to be efficient in the capability of dehairing without destruction of the hide. The remarkable properties such as temperature, pH and immobilization stability found with this enzyme assure that it could be a potential candidate for industrial applications.  相似文献   

2.
Xylaria regalis, a wood-grown ascomycete isolated in Taiwan, produces β-glucosidase (EC 3.2.1.21) extracellularly. The β-glucosidase was purified to homogeneity by ammonium sulfate precipitation, ion-exchange, and gel filtration chromatography. The molecular mass of the purified enzyme was estimated to be 85 kDa by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. With p-nitrophenyl β-D-glucopyranoside (PNPG) as the substrate at pH 5.0 and 50°C, the K m was 1.72 mM and V max was 326 μmol/min/mg. Optimal activity with PNPG as the substrate was at pH 5.0 and 50°C. The enzyme was stable at pH 5.0 at temperatures up to 50°C. The purified β-glucosidase was active against PNPG, cellobiose, sophorose, and gentiobiose, but did not hydrolyze lactose, sucrose, Avicel, and o-nitrophenyl β-D-galactopyranoside. The activity of β-glucosidase was stimulated by Ca2+, Mg2+, Mn2+, Cd2+ and β-mercaptoethanol, and inhibited by Ag+, Hg2+, SDS, and p-chloromercuribenzoate (PCMB). Received: 30 March 1996 / Accepted: 3 May 1996  相似文献   

3.
An alkalophilic strain isolated from soil produced intracellular cyclomaltodextrinase on the culture medium at an initial pH of 10.6. The strain was identified as closely resembling Bacillus circulans. The enzyme was purified 252-fold from the cell extract by chitosan treatment, ammonium sulfate fractionation, DEAE-Toyopearl column chromatography, and gel filtration. The pH and temperature optima of the purified enzyme were 6.0 and 50°C. The molecular weight of the enzyme was 126,000, with two subunits of 67,000. The isoelectric point was pH 4.2. Enzyme activity was inhibited by Ag+, Hg2+, Cu2+, and p-chloromercuribenzoate. The enzyme hydrolyzed α-, β-, and γ-cyclodextrins, as well as linear maltodextrins, to yield maltooligosaccharides. Starch and maltose were not degraded by the enzyme.  相似文献   

4.
An epoxide hydrolase gene of about 0.8 kb was cloned from Rhodococcus opacus ML-0004, and the open reading frame (ORF) sequence predicted a protein of 253 amino acids with a molecular mass of about 28 kDa. An expression plasmid carrying the gene under the control of the tac promotor was introduced into Escherichia coli, and the epoxide hydrolase gene was successfully expressed in the recombinant strains. Some characteristics of purified recombinant epoxide hydrolase were also studied. Epoxide hydrolase showed a high stereospecificity for l(+)-tartaric acid, but not for d(+)-tartaric acid. The epoxide hydrolase activity could be assayed at the pH ranging from 3.5 to 10.0, and its maximum activity was obtained between pH 7.0 and 7.5. The enzyme was sensitive to heat, decreasing slowly between 30°C and 40°C, and significantly at 45°C. The enzyme activity was activated by Ca2+ and Fe2+, while strongly inhibited by Ag+ and Hg+, and slightly inhibited by Cu2+, Zn2+, Ba2+, Ni+, EDTA–Na2 and fumarate.  相似文献   

5.
Sterol glucosyltransferase activity was found in a particulate fraction of pea seeds. The activity was stimulated by Ca2+ and Mg2+ and inhibited by Zn2+, Cu2+, Hg2+, EDTA and EGTA. Iodoacetamide was without effect but p-chloromercuribenzoate completely inhibited the enzyme. N -Ethylmaleimide gave 60–70 % inhibition over a wide range of concentrations. The activity was stimulated by ATP in the presence of Mg2+. Under such conditions, steryl acyl glucoside was formed. The acyl derivative was barely detectable in the presence of Ca2+ either with or without ATP. Both oleyl CoA and palmityl CoA stimulated acyl glucoside synthesis. Of the four nucleoside triphosphates, ATP, GTP, UTP and CTP both ATP and CTP stimulated acylation in the presence of Mg2+. The observations suggest that acyl donors other than digalactosyl diglyceride and phospholipids may function in steryl acyl glucoside synthesis in plants.  相似文献   

6.
A chitinase (EC 3.2.1.14) was purified from the culture filtrate of Streptomyces cinereoruber, selected as a microorganism which produces enzymes lysing Aspergillus niger cell wall, by fractional precipitation with ammonium sulfate and column chromatographies on DEAE-cellulose, Sephadex G-100 and CM-Sephadex C-50. The final preparation was homogenous in polyacrylamide gel disc electrophoresis. The molecular weight of the enzyme was about 19,000 daltons and its isoelectric point was pH 8.6. The optimum pH and temperature for chitinase activity were 4.5 and at 50°C, respectively. The enzyme was stable in the pH range from 4.0 to 10.0. The activity was inhibited by Ag+, Hg+, Hg2+ and p-chloromercuribenzoate. Paper chromatographic analysis demonstrated that the hydrolytic products of colloidal chitin and chitotriose with the enzyme were N-acetylglucosamine and chitobiose. The lysis of A. niger cell wall with the enzyme is discussed.  相似文献   

7.
Extracts of cytoplasmic membranes ofStreptococcus sanguis 903 were analyzed for aminopeptidase activity by isoelectric focusing in polyacrylamide gel and enzyme staining with 16 different aminopeptidase substrates. A single aminopeptidase with specificity for aminoterminal arginine was detected. The enzyme was stimulated by dithiothreitol and-mercaptoethanol. Urea, sodium dodecyl sulfate (SDS), andp-chloromercuribenzoate were inhibitory. Metal ions had little or no effect on activity, except that Hg2+, Cu2+, and Ni2+ were inhibitory. The pH optimum for activity was at 7.2. The molecular mass estimated by SDS-polyacrylamide gel electrophoresis was 170 kDa.  相似文献   

8.
A highly selective sucrose isomerase (SIase) was purified to homogeneity from the cell-free extract of Erwinia rhapontici NX-5 with a recovery of 27.7% and a fold purification of 213.6. The purified SIase showed a high specific activity of 427.1 U mg−1 with molecular weight of 65.6 kDa. The K m for sucrose was 222 mM while V max was 546 U mg−1. The optimum pH and temperature for SIase activity were 6.0 and 30 °C, respectively. The purified SIase was stable in the temperature range of 10–40 °C and retained 65% of the enzyme activity after 2 weeks’ storage at 30 °C. The SIase activity was enhanced by Mg2+ and Mn2+, inhibited by Ca2+, Cu2+, Zn2+, and Co2+, completely inhibited by Hg2+ and Ag2+. The purified SIase was strongly inhibited by SDS, while partially inhibited by dimethylformamide, tetrahydrofuran, and PMSF. Additionally, glucose and fructose acted as competitive inhibitors for purified SIase.  相似文献   

9.
Actinoplanes sp. No. 1700, a sporangium-forming, filamentous, soil bacterium possesses a β-D-glucosidase (β-D-glucoside glucohydrolase, E.C. 3.2.1.21). The enzyme was induced to higher concentrations by addition of methyl or phenyl β-D-glucopyranoside, gentiobiose, or salicin to growing cultures. Addition of D-glucose, lactate, or acetate repressed enzyme induction back to the constitutive level, but never below it. The properties of this inducible system place it in the semi-constitutive category.Both the constitutive and the inducible enzyme were purified 60-fold; their properties were compared and found to be identical. Their pH optima lay between 5.8 and 6.0; the enzymes were stable for 2 h at 30° at pH 5.5 to 7.3. Rapid inactivation occurred at temperatures above 50°. The enzymes were inactivated by 100μM CU2+, Hg2+, Pb2+, and Ag+.Each of these β-D-glucosidases was inhibited by p-chloromercuribenzoate (100 μ/M); this effect was overcome by cysteine or 2-mercaptoethanol, indicating that the β-D-glucosidase is a sulfhydryl enzyme. Kinetic determinations with chromogenic p-nitrophenyl β-D-glucopyranoside established a Km. of 2.5 x 10-4 and an Arrhenius activation-energy of 8.5 kcal.mole-1. The molecular weight of the induced enzyme was 165,000 as determined by elution from Sephadex G-200. Chromatographic studies showed the enzyme to be a hydrolase, not a transferase.  相似文献   

10.
In an attempt to elucidate the effect of metallic ions and EDTA on acidic α-d-glucosidase activity, we measured acidic α-d-glucosidase activity from either lymphocyte and muscle tissue homogenates or intact cells after incubation with metallic ions. The results showed that this enzyme activity was strongly inhibited by Ag+, Hg2+, and Fe3+ in either lymphocyte or muscle tissue homogenates. There was no effect of Zn2+, Cu2+, and Cd2+. However, intact cells, either lymphocyte or muscle cells, after incubation with Zn2+ for 1 or 2 hr, showed enhanced enzyme activity and suppression in the other metallic ion groups, especially in Ag+, Hg2+, and Fe3+. Since deficiency of this enzyme can cause type II glycogen storage disese (Pompe’s disease), the more we understand the character of this enzyme, the more we can improve our enzymatic therapy. This work was supported by Grant NSC75-0412-B075-41 from the National Science Council of the Republic of China.  相似文献   

11.
An exopolygalacturonase (exoPG) and an exopolymethylgalacturonase (exoPMG) produced by Sclerotinia sclerotiorum have been purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. The exoPG and the exoPMG were purified 66- and 50-fold, respectively, by using a series of separation procedures that included ammonium sulfate precipitation and gel chromatography. Molecular masses of the native proteins were 68 kDa for exoPG and 140 kDa for exoPMG. The pH optima of the enzymes were about pH 5, and their optimum temperature was 45°C. Activities of both enzymes were inhibited by Hg2+, Zn2+, Cu2+, and p-chloromercuribenzoate. ExoPMG activity, in contrast to exoPG activity, was stimulated by Mn2+ and Co2+. ExoPMG hydrolyzed only citrus pectin, while exoPG degraded sodium polygalacturonate and, to a lesser extent, citrus pectin. The exo mode of action of the enzymes was revealed by thin-layer chromatography of substrate hydrolysates. Antibodies raised against each purified protein exhibited no cross-reaction, thus confirming the biochemical specificities of the enzymes.  相似文献   

12.
Mutanases are enzymes that catalyze hydrolysis of α-1,3-glucosidic bonds in various α-glucans. One of such glucans, mutan, which is synthesized by cariogenic streptococci, is a major virulence factor for induction of dental caries. This means that mutan-degrading enzymes have potential in caries prophylaxis. In this study, we report the purification, characterization, and partial amino acid sequence of extracellular mutanase produced by the MP-1 strain of Paenibacillus curdlanolyticus, bacterium isolated from soil. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme showed a single protein band of molecular mass 134 kD, while native gel filtration chromatography confirmed that the enzyme was a monomer of 142 kD. Mutanase showed a pH optimum in the range from pH 5.5 to 6.5 and a temperature optimum around 40–45°C. It was thermostable up to 45°C, and retained 50% activity after 1 hr at 50°C. The enzyme was fully stable at a pH range of 4 to 10. The enzyme activity was stimulated by the addition of Tween 20, Tween 80, and Ca2+, but it was significantly inhibited by Hg2+, Ag+, and Fe2+, and also by p-chloromercuribenzoate, iodoacetamide, and ethylenediamine tetraacetic acid (EDTA). Mutanase preparation preferentially catalyzed the hydrolysis of various streptococcal mutans and fungal α-1,3-glucans. It also showed binding activity to insoluble α-1,3-glucans. The N-terminal amino acid sequence was NH2-Ala-Gly-Gly-Thr-Asn-Leu-Ala-Leu-Gly-Lys-Asn-Val-Thr-Ala-Ser-Gly-Gln. This sequence indicated an analogy of the enzyme to α-1,3-glucanases from other Paenibacillus and Bacillus species.  相似文献   

13.
A tannase (E.C. 3.1.1.20) producing fungal strain was isolated from soil and identified as Aspergillus heteromorphus MTCC 8818. Maximum tannase production was achieved on Czapek Dox minimal medium containing 1% tannic acid at a pH of 4.5 and 30°C after 48 h incubation. The crude enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography. Diethylaminoethyl-cellulose column chromatography led to an overall purification of 39.74-fold with a yield of 19.29%. Optimum temperature and pH for tannase activity were 50°C and 5.5 respectively. Metal ions such as Ca2+, Fe2+, Cu1+, and Cu2+ increased tannase activity, whereas Hg2+, Na1+, K1+, Zn2+, Ag1+, Mg2+, and Cd2+ acted as enzyme inhibitors. Various organic solvents such as isopropanol, isoamyl alcohol, benzene, methanol, ethanol, toluene, and glycerol also inhibited enzyme activity. Among the surfactants and chelators studied, Tween 20, Tween 80, Triton X-100, EDTA, and 1, 10-o-phenanthrolein inhibited tannase activity, whereas sodium lauryl sulfate enhanced tannase activity at 1% (w/v).  相似文献   

14.
Wang X  Chi Z  Yue L  Li J 《Current microbiology》2007,55(5):396-401
The molecular mass of the purified killer toxin from the marine killer yeast YF07b was estimated to be 47.0 kDa. The optimal pH and temperature of the purified killer toxin were 4.5 and 40°C, respectively. The toxin was activated by Ca2+, K+, Na+, Mg2+, Na+, and Co2+. However, Fe2+, Fe3+, Hg2+, Cu2+, Mn2+, Zn2+, and Ag+ acted as inhibitors in decreasing activity of the toxin. The toxin was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, ethylenediaminetetraacetic acid, and 1,10-phenanthroline. The Km of the toxin for laminarin was 1.17 g L−1. The toxin also actively hydrolyzed laminarin and killed the whole cells of the pathogenic yeast in crab.  相似文献   

15.
A microorganism, which produced a potently bacteriolytic endopeptidase, was isolated from soil and classified taxonomically as Cytophaga sp. B-30. This enzyme was purified 740-fold from the culture broth by fractionations with ammonium sulfate and acetone, column chromatographies on CM-cellulose and hydroxyapatite twice, and gel filtration on Sephadex G-75. It was found to be homogeneous on PAGE and SDS-PAGE. The molecular weight and isoelectric point of this enzyme were estimated to be 9,000 daltons and pH 9.5, respectively, and the optimal pH for its activity was 9.5. The enzyme acivity was completely inhibited by Mn+ +, Zn+ +, Cu+ +, Hg+ +, 2-mercaptoethanol and 2,3-dimercapto-l-propanol but markedly stimulated by EDTA, potassium oxalete and sodium pyrophosphate at the concentration of 1 mM. This enzyme catalyzed both cell wall lysis and proteolysis. A polysaccharide peptide of long chain length was isolated from a digest of Staphylococcus epidermidis peptidoglycan with this enzyme.  相似文献   

16.
Endo-β-1,4-glucanase encoded byBacillus subtilis JA18 was expressed inEscherichia coli. The recombinant enzyme was purified and characterized. The purified enzyme showed a single band of 50 kDa by SDS-PAGE. The optimum pH and temperature for this endo-β-1,4-glucanase was pH 5.8 and 60 °C. The endo-β-1,4-glucanase was highly stable in a wide pH range, from 4.0 to 12.0. Furthermore, it remained stable up to 60 °C. The endo-β-1,4-glucanase was completely inhibited by 2 mM Zn2+, Cu2+, Fe3+, Ag+, whereas it is activated in the presence of Co2+. In addition, the enzyme activity was inhibited by 1 mM Mn2+ but stimulated by 10 mM Mn2+. At 1% concentration, SDS completely inhibited the enzyme. The enzyme hydrolysed carboxymethylcellulose, lichenan but no activity was detected with regard to avicel, xylan, chitosan and laminarin. For carboxymethylcellulose, the enzyme had a Km of 14.7 mg/ml.  相似文献   

17.
Novel extracellular phytase was produced by Aspergillus niger NCIM 563 under submerged fermentation conditions at 30 °C in medium containing dextrin and glucose as carbon sources along with sodium nitrate as nitrogen source. Maximum phytase activity (41.47 IU/mL at pH 2.5 and 10.71 IU/mL at pH 4.0) was obtained when dextrin was used as carbon source along with glucose and sodium nitrate as nitrogen source. Nearly 13 times increase in phytase activity was observed when phosphate in the form of KH2PO4 (0.004 g/100 mL) was added in the fermentation medium. Physic-chemical properties of partially purified enzyme indicate the possibility of two distinct forms of phytases, Phy I and Phy II. Optimum pH and temperature for Phy I was 2.5 and 60 °C while Phy II was 4.0 and 60 °C, respectively. Phy I was stable in the pH range 1.5–3.5 while Phy II was stable in the wider pH range, 2.0–7.0. Molecular weight of Phy I and Phy II on Sephacryl S-200 was approximately 304 kDa and 183 kDa, respectively. Phy I activity was moderately stimulated in the presence of 1 mM Mg2+, Mn2+, Ca2+ and Fe3+ ions and inhibited by Zn2+ and Cd2+ ions while Phy II activity was moderately stimulated by Fe3+ ions and was inhibited by Hg2+, Mn2+ and Zn2+ ions at 1 mM concentration in reaction mixture. The Km for Phy I and II was 3.18 and 0.514 mM while Vmax was 331.16 and 59.47 μmols/min/mg protein, respectively.  相似文献   

18.
Four mannanases (Mannanases I, II, III, and IV) were isolated from the culture filtrate of a Streptomyces sp. by ion exchange chromatography. Mannanase IV was the main component and accounted for 64.4% of the total activity of the four mannanases. Mannanase IV was further purified by gel filtration, and the purified Mannanase IV was homogeneous on disc-gel electrophoretic analysis.

Optimum pH and temperature for the activity of Mannanase IV were 6.8 and 57°C, respectively. It was stable at temperatures up to 45°C when examined at pH 6.8 for 30min, and lost only 15% of its activity at 70°C for 30min at pH 6.8. The isoelectric point and molecular weight were pH 3.65 and 42,900, respectively. The enzyme was strongly inactivated by Al3+, Hg2+, Fe2+, Fe3+, Cd2+, Ag+, Sn2+, and Cu2+, and completely inhibited by iodoacetic acid and N-bromosuccinimide. The enzyme hydrolyzed mannotriose to mannose and mannobiose, but did not hydrolyze mannobiose.  相似文献   

19.
Summary A high molecular weight endoxylanase (XylF2) from the solid state culture of Aspergillus fumigatus MKU1 was purified to homogeneity by a combination of tube gel electrophoresis and electroelution methods. The purity was demonstrated by SDS-PAGE and the molecular mass of the XylF2 was found to be 66 kDa. The optimal pH and temperature for activity were 5.0 and 90 °C, respectively. The apparent K m and V max values of XylF2 with oat spelt xylan as substrate were 1.6 mg/ml and 3.25 mmol/min/mg protein respectively. The enzyme showed high activity towards oat spelt xylan while negligible activity was observed on carboxymethylcellulose. The activity of XylF2 was strongly inhibited by Hg2+, Ni2+, Zn2+, SDS and N-bromosuccinimide and stimulated by l-cysteine and iodoacetamide. The hydrolysis of oat spelt xylan by XylF2 released only xylo-oligosaccharides.  相似文献   

20.
Acetone fractionation of Bacillus lentus culture filtrate yielded the highest -amylase activity and the 66.6% fraction reached 13-fold that of the crude enzyme preparation. Gel filtration and ion exchange chromatography afforded a pure -amylase (relative molecular mass, 42 000). The pure enzyme was highly active on starch and dextrin. It produced a mixture of oligosaccharides as major products of starch hydrolysis. Maximal activity was reached at 70° C and pH 6.1. Ca2+, Na+, K+ and Sr2+ ions stabilized or slightly stimulated the enzyme whereas Ag+, Co2+, Hg2+, Zn2+, Cd2+ and Fe3+ ions strongly inhibited the activity. The enzyme contained 16 amino acids, of which aspartic and glutamic acids were present in the highest proportions. Correspondence to: S. H. Omar  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号