首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The precise mechanisms underlying insulin-stimulated glucose transport still require investigation. Here we assessed the effect of SB203580, an inhibitor of the p38 MAP kinase family, on insulin-stimulated glucose transport in 3T3-L1 adipocytes and L6 myotubes. We found that SB203580, but not its inactive analogue (SB202474), prevented insulin-stimulated glucose transport in both cell types with an IC50 similar to that for inhibition of p38 MAP kinase (0.6 microM). Basal glucose uptake was not affected. Moreover, SB203580 added only during the transport assay did not inhibit basal or insulin-stimulated transport. SB203580 did not inhibit insulin-stimulated translocation of the glucose transporters GLUT1 or GLUT4 in 3T3-L1 adipocytes as assessed by immunoblotting of subcellular fractions or by immunofluorescence of membrane lawns. L6 muscle cells expressing GLUT4 tagged on an extracellular domain with a Myc epitope (GLUT4myc) were used to assess the functional insertion of GLUT4 into the plasma membrane. SB203580 did not affect the insulin-induced gain in GLUT4myc exposure at the cell surface but largely reduced the stimulation of glucose uptake. SB203580 had no effect on insulin-dependent insulin receptor substrate-1 phosphorylation, association of the p85 subunit of phosphatidylinositol 3-kinase with insulin receptor substrate-1, nor on phosphatidylinositol 3-kinase, Akt1, Akt2, or Akt3 activities in 3T3-L1 adipocytes. In conclusion, in the presence of SB203580, insulin caused normal translocation and cell surface membrane insertion of glucose transporters without stimulating glucose transport. We propose that insulin stimulates two independent signals contributing to stimulation of glucose transport: phosphatidylinositol 3-kinase leads to glucose transporter translocation and a pathway involving p38 MAP kinase leads to activation of the recruited glucose transporter at the membrane.  相似文献   

2.
Expression of NCS-1 (neuronal calcium sensor-1, also termed frequenin) in 3T3L1 adipocytes strongly inhibited insulin-stimulated translocation of GLUT4 and insulin-responsive aminopeptidase. The effect of NCS-1 was specific for GLUT4 and the insulin-responsive aminopeptidase translocation as there was no effect on the trafficking of the cation-independent mannose 6-phosphate receptor or the GLUT1 glucose transporter isoform. Moreover, NCS-1 showed partial colocalization with GLUT4-EGFP in the perinuclear region. The inhibitory action of NCS-1 was independent of calcium sequestration since neither treatment with ionomycin nor endothelin-1, both of which elevated the intracellular calcium concentration, restored insulin-stimulated GLUT4 translocation. Furthermore, NCS-1 did not alter the insulin-stimulated protein kinase B (PKB/Akt) phosphorylation or the recruitment of Cbl to the plasma membrane. In contrast, expression of the NCS-1 effector phosphatidylinositol 4-kinase (PI 4-kinase) inhibited insulin-stimulated GLUT4 translocation, whereas co-transfection with an inactive PI 4-kinase mutant prevented the NCS-1-induced inhibition. These data demonstrate that PI 4-kinase functions to negatively regulate GLUT4 translocation through its interaction with NCS-1.  相似文献   

3.
Extracellular ATP acts as a signal that regulates a variety of cellular processes via binding to P2 purinergic receptors (P2 receptors). We herein investigated the effects and signaling pathways of ATP on glucose uptake in C(2)C(12) skeletal muscle cells. ATP as well as P2 receptor agonists (ATP-gamma S) stimulated the rate of glucose uptake, while P2 receptor antagonists (suramin) inhibited the stimulatory effect of ATP, indicating that P2 receptors are involved. This ATP-stimulated glucose transport was blocked by specific inhibitors of Gi protein (pertusiss toxin), phospholipase C (U73122), protein kinase C (GF109203X), and phosphatidylinositol (PI) 3-kinase (LY294002). ATP stimulated PI 3-kinase activity and P2 receptor antagonists blocked this activation. In C(2)C(12) myotubes expressing glucose transporter GLUT4, ATP increased basal and insulin-stimulated glucose transport. Finally, ATP facilitated translocation of GLUT1 and GLUT4 into plasma membrane. These results together suggest that cells respond to extracellular ATP to increase glucose transport through P2 receptors.  相似文献   

4.
It has been previously reported that calmodulin plays a regulatory role in the insulin stimulation of glucose transport. To examine the basis for this observation, we examined the effect of a panel of calmodulin antagonists that demonstrated a specific inhibition of insulin-stimulated glucose transporter 4 (GLUT4) but not insulin- or platelet-derived growth factor (PDGF)-stimulated GLUT1 translocation in 3T3L1 adipocytes. These treatments had no effect on insulin receptor autophosphorylation or tyrosine phosphorylation of insulin receptor substrate 1 (IRS1). Furthermore, IRS1 or phosphotyrosine antibody immunoprecipitation of phosphatidylinositol (PI) 3-kinase activity was not affected. Despite the marked insulin and PDGF stimulation of PI 3-kinase activity, there was a near complete inhibition of protein kinase B activation. Using a fusion protein of the Grp1 pleckstrin homology (PH) domain with the enhanced green fluorescent protein, we found that the calmodulin antagonists prevented the insulin stimulation of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] formation in vivo. Similarly, although PDGF stimulation increased PI 3-kinase activity in in vitro immunoprecipitation assays, there was also no significant formation of PI(3,4,5)P3 in vivo. These data demonstrate that calmodulin antagonists prevent insulin-stimulated GLUT4 translocation by inhibiting the in vivo production of PI(3,4,5)P3 without directly affecting IRS1- or phosphotyrosine-associated PI 3-kinase activity. This phenomenon is similar to that observed for the PDGF stimulation of 3T3L1 adipocytes.  相似文献   

5.
We evaluated the role of the G alpha-q (Galphaq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Galphaq function by single cell microinjection of anti-Galphaq/11 antibody or RGS2 protein (a GAP protein for Galphaq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Galphaq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Galphaq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Galphaq (WT-Galphaq) or a constitutively active Galphaq mutant (Q209L-Galphaq) by using an adenovirus expression vector. In the basal state, Q209L-Galphaq expression stimulated 2-deoxy-D-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Galphaq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Galphaq stimulates PI3-kinase activity in p110alpha and p110gamma immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110alpha by 10-fold. Nevertheless, only microinjection of anti-p110alpha (and not p110gamma) antibody inhibited both insulin- and Q209L-Galphaq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Galphaq are dependent on the p110alpha subunit of PI3-kinase. In summary, (i) Galphaq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Galphaq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Galphaq can transmit signals from the insulin receptor to the p110alpha subunit of PI3-kinase, which leads to GLUT4 translocation.  相似文献   

6.
Phosphatidylinositol (PI) 3-kinase is required for insulin-stimulated translocation of GLUT4 to the surface of muscle and fat cells. Recent evidence suggests that the full stimulation of glucose uptake by insulin also requires activation of GLUT4, possibly via a p38 mitogen-activated protein kinase (p38 MAPK)-dependent pathway. Here we used L6 myotubes expressing Myc-tagged GLUT4 to examine at what level the signals regulating GLUT4 translocation and activation bifurcate. We compared the sensitivity of each process, as well as of signals leading to GLUT4 translocation (Akt and atypical protein kinase C) to PI 3-kinase inhibition. Wortmannin inhibited insulin-stimulated glucose uptake with an IC(50) of 3 nm. In contrast, GLUT4myc appearance at the cell surface was less sensitive to inhibition (IC(50) = 43 nm). This dissociation between insulin-stimulated glucose uptake and GLUT4myc translocation was not observed with LY294002 (IC(50) = 8 and 10 microm, respectively). The sensitivity of insulin-stimulated activation of PKC zeta/lambda, Akt1, Akt2, and Akt3 to wortmannin (IC(50) = 24, 30, 35, and 60 nm, respectively) correlated closely with inhibition of GLUT4 translocation. In contrast, insulin-dependent p38 MAPK phosphorylation was efficiently reduced in cells pretreated with wortmannin, with an IC(50) of 7 nm. Insulin-dependent p38 alpha and p38 beta MAPK activities were also markedly reduced by wortmannin (IC(50) = 6 and 2 nm, respectively). LY294002 or transient expression of a dominant inhibitory PI 3-kinase construct (Delta p85), however, did not affect p38 MAPK phosphorylation. These results uncover a striking correlation between PI 3-kinase, Akt, PKC zeta/lambda, and GLUT4 translocation on one hand and their segregation from glucose uptake and p38 MAPK activation on the other, based on their wortmannin sensitivity. We propose that a distinct, high affinity target of wortmannin, other than PI 3-kinase, may be necessary for activation of p38 MAPK and GLUT4 in response to insulin.  相似文献   

7.
We investigated the role of cdc42, a Rho GTPase family member, in insulin-induced glucose transport in 3T3-L1 adipocytes. Microinjection of anti-cdc42 antibody or cdc42 siRNA led to decreased insulin-induced and constitutively active G(q) (CA-G(q); Q209L)-induced GLUT4 translocation. Adenovirus-mediated expression of constitutively active cdc42 (CA-cdc42; V12) stimulated 2-deoxyglucose uptake to 56% of the maximal insulin response, and this was blocked by treatment with the phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, wortmannin, or LY294002. Both insulin and CA-G(q) expression caused an increase in cdc42 activity, showing that cdc42 is activated by insulin and is downstream of G alpha(q/11) in this activation pathway. Immunoprecipitation experiments showed that insulin enhanced a direct association of cdc42 and p85, and both insulin treatment and CA-cdc42 expression stimulated PI3-kinase activity in immunoprecipitates with anti-cdc42 antibody. Furthermore, the effects of insulin, CA-G(q), and CA-cdc42 on GLUT4 translocation or 2-deoxyglucose uptake were inhibited by microinjection of anti-protein kinase C lambda (PKC lambda) antibody or overexpression of a kinase-deficient PKC lambda construct. In summary, activated cdc42 can mediate 1) insulin-stimulated GLUT4 translocation and 2) glucose transport in a PI3-kinase-dependent manner. 3) Insulin treatment and constitutively active G(q) expression can enhance the cdc42 activity state as well as the association of cdc42 with activated PI3-kinase. 4) PKC lambda inhibition blocks CA-cdc42, CA-G(q), and insulin-stimulated GLUT4 translocation. Taken together, these data indicate that cdc42 can mediate insulin signaling to GLUT4 translocation and lies downstream of G alpha(q/11) and upstream of PI3-kinase and PKC lambda in this stimulatory pathway.  相似文献   

8.
The current studies investigated the contribution of phosphatidylinositol 3-kinase (PI3-kinase) isoforms to insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation. Experiments involving the microinjection of antibodies specific for the p110 catalytic subunit of class I PI3-kinases demonstrated an absolute requirement for this form of the enzyme in GLUT4 translocation. This finding was confirmed by the demonstration that the PI3-kinase antagonist wortmannin inhibits GLUT4 and insulin-responsive aminopeptidase translocation with a dose response identical to that required to inhibit another class I PI3-kinase-dependent event, activation of pp70 S6-kinase. Interestingly, wortmannin inhibited insulin-stimulated glucose uptake at much lower doses, suggesting the existence of a second, higher affinity target of the drug. Subsequent removal of wortmannin from the media shifted this dose-response curve to one resembling that for GLUT4 translocation and pp70 S6-kinase. This is consistent with the lower affinity target being p110, which is irreversibly inhibited by wortmannin. Wortmannin did not reduce glucose uptake in cells stably expressing Myr-Akt, which constitutively induced GLUT4 translocation to the plasma membrane; this demonstrates that wortmannin does not inhibit the transporters directly. In addition to elucidating a second wortmannin-sensitive pathway in 3T3-L1 adipocytes, these studies suggest that the presence of GLUT4 on the plasma membrane is not sufficient for activation of glucose uptake.  相似文献   

9.
Elevated levels of resistin have been proposed to cause insulin resistance and therefore may serve as a link between obesity and type 2 diabetes. However, its role in skeletal muscle metabolism is unknown. In this study, we examined the effect of resistin on insulin-stimulated glucose uptake and the upstream insulin-signaling components in L6 rat skeletal muscle cells that were either incubated with recombinant resistin or stably transfected with a vector containing the myc-tagged mouse resistin gene. Transfected clones expressed intracellular resistin, which was released in the medium. Incubation with recombinant resistin resulted in a dose-dependent inhibition of insulin-stimulated 2-deoxyglucose (2-DG) uptake. The inhibitory effect of resistin on insulin-stimulated 2-DG uptake was not the result of impaired GLUT4 translocation to the plasma membrane. Furthermore, resistin did not alter the insulin receptor (IR) content and its phosphorylation, nor did it affect insulin-stimulated insulin receptor substrate (IRS)-1 tyrosine phosphorylation, its association with the p85 subunit of phosphatidylinositol (PI) 3-kinase, or IRS-1-associated PI 3-kinase enzymatic activity. Insulin-stimulated phosphorylation of Akt/protein kinase B-alpha, one of the downstream targets of PI 3-kinase and p38 MAPK phosphorylation, was also not affected by resistin. Expression of resistin also inhibited insulin-stimulated 2-DG uptake when compared with cells expressing the empty vector (L6Neo) without affecting GLUT4 translocation, GLUT1 content, and IRS-1/PI 3-kinase signaling. We conclude that resistin does not alter IR signaling but does affect insulin-stimulated glucose uptake, presumably by decreasing the intrinsic activity of cell surface glucose transporters.  相似文献   

10.
Insulin stimulates glucose transport in insulin target tissues by recruiting glucose transporters (primarily GLUT4) from an intracellular compartment to the cell surface. Previous studies have demonstrated that insulin receptor tyrosine kinase activity and subsequent phosphorylation of insulin receptor substrate 1 (IRS-1) contribute to mediating the effect of insulin on glucose transport. We have now investigated the roles of 1-phosphatidylinositol 3-kinase (PI 3-kinase) and ras, two signaling proteins located downstream from tyrosine phosphorylation. Rat adipose cells were cotransfected with expression vectors that allowed transient expression of epitope-tagged GLUT4 and the other genes of interest. Overexpression of a mutant p85 regulatory subunit of PI 3-kinase lacking the ability to bind and activate the p110 catalytic subunit exerted a dominant negative effect to inhibit insulin-stimulated translocation of epitope-tagged GLUT4 to the cell surface. In addition, treatment of control cells with wortmannin (an inhibitor of PI 3-kinase) abolished the ability of insulin to recruit epitope-tagged GLUT4 to the cell surface. Thus, our data suggest that PI 3-kinase plays an essential role in insulin-stimulated GLUT4 recruitment in insulin target tissues. In contrast, over-expression of a constitutively active mutant of ras (L61-ras) resulted in high levels of cell surface GLUT4 in the absence of insulin that were comparable to levels seen in control cells treated with a maximally stimulating dose of insulin. However, wortmannin treatment of cells overexpressing L61-ras resulted in only a small decrease in the amount of cell surface GLUT4 compared with that of the same cells in the absence of wortmannin. Therefore, while activated ras is sufficient to recruit GLUT4 to the cell surface, it does so by a different mechanism that is probably not involved in the mechanism by which insulin stimulates GLUT4 translocation in physiological target tissues.  相似文献   

11.
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by approximately 33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCzeta/lambda, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4-myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.  相似文献   

12.
Insulin stimulates glucose transport in muscle and adipocytes. This is achieved by regulated delivery of intracellular glucose transporter (GLUT4)-containing vesicles to the plasma membrane where they dock and fuse, resulting in increased cell surface GLUT4 levels. Recent work identified a potential further regulatory step, in which insulin increases the dispersal of GLUT4 in the plasma membrane away from the sites of vesicle fusion. EFR3 is a scaffold protein that facilitates localization of phosphatidylinositol 4-kinase type IIIα to the cell surface. Here we show that knockdown of EFR3 or phosphatidylinositol 4-kinase type IIIα impairs insulin-stimulated glucose transport in adipocytes. Using direct stochastic reconstruction microscopy, we also show that EFR3 knockdown impairs insulin stimulated GLUT4 dispersal in the plasma membrane. We propose that EFR3 plays a previously unidentified role in controlling insulin-stimulated glucose transport by facilitating dispersal of GLUT4 within the plasma membrane.  相似文献   

13.
Munc18c has been shown to bind syntaxin 4 and to play a role in GLUT4 translocation and glucose transport, although this role is as yet poorly defined. In the present study, the effects of modulating the available level of munc18c on glucose transport and GLUT4 translocation were examined. Over-expression of munc18c in 3T3L1 adipocytes inhibited insulin-stimulated glucose transport by approximately 50%. Basal glucose transport rates were also decreased by approximately 25%. In contrast, microinjection of a munc18c polyclonal antibody stimulated GLUT4 translocation by approximately 60% over basal levels without affecting insulin-stimulated GLUT4 levels. Microinjection of a control antibody had no effect. These data are consistent with the likelihood that antibody microinjection sequesters munc18c enabling translocation/fusion of GLUT4 vesicles. Mutagenesis of a potential proline-directed kinase phosphorylation site in munc18c, T569, that in previous studies of its neuronal counterpart munc18a caused its dissociation from its complex with syntaxin 1a, had no effect on munc18c's association with syntaxin 4 or its inhibition of glucose transport, indicative that phosphorylation of this residue is not important for insulin regulation of glucose transport. The over-expression and microinjection sequestration data support an inhibitory role for munc18c on translocation/fusion of GLUT4 vesicles. They further show that altering the level of available munc18c in 3T3L1 cells can modulate glucose transport rates, indicating its potential as a target for therapeutics in diabetes.  相似文献   

14.
Phosphatidylinositol 3-kinase (PI 3-kinase) is stimulated by insulin and a variety of growth factors, but its exact role in signal transduction remains unclear. We have used a novel, highly specific inhibitor of PT 3-kinase to dissect the role of this enzyme in insulin action. Treatment of intact 3T3-L1 adipocytes with LY294002 produced a dose-dependent inhibition of insulin-stimulated PI 3-kinase (50% inhibitory concentration, 6 microM) with > 95% reduction in the levels of phosphatidylinositol-3,4,5-trisphosphate without changes in the levels of phosphatidylinositol-4-monophosphate or its derivatives. In parallel, there was a complete inhibition of insulin-stimulated phosphorylation and activation of pp70 S6 kinase. Inhibition of PI 3-kinase also effectively blocked insulin- and serum-stimulated DNA synthesis and insulin-stimulated glucose uptake by inhibiting translocation of GLUT 4 glucose transporters to the plasma membrane. By contrast, LY294002 had no effect on insulin stimulation of mitogen-activated protein kinase or pp90 S6 kinase. Thus, activation of PI 3-kinase plays a critical role in mammalian cells and is required for activation of pp70 S6 kinase and DNA synthesis and certain forms of intracellular vesicular trafficking but not mitogen-activated protein kinase or pp90 S6 kinase activation. These data suggest that PI 3-kinase is not only an important component but also a point of divergence in the insulin signaling network.  相似文献   

15.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes.  相似文献   

16.
In adipose and muscle, insulin stimulates glucose uptake and glycogen synthase activity. Phosphatidylinositol 3-kinase (PI3K) activation is necessary but not sufficient for these metabolic actions of insulin. The insulin-stimulated translocation of phospho-c-Cbl to lipid rafts, via its association with CAP, comprises a second pathway regulating GLUT4 translocation. In 3T3-L1 adipocytes, overexpression of a dominant negative CAP mutant (CAP Delta SH3) completely blocked the insulin-stimulated glucose transport and glycogen synthesis but only partially inhibited glycogen synthase activation. In contrast, CAP Delta SH3 expression did not affect glycogen synthase activation by insulin in the absence of extracellular glucose. Moreover, CAP Delta SH3 has no effect on the PI3K-dependent activation of protein phosphatase-1 or phosphorylation of glycogen synthase kinase-3. These results indicate blockade of the c-Cbl/CAP pathway directly inhibits insulin-stimulated glucose uptake, which results in secondary inhibition of glycogen synthase activation and glycogen synthesis.  相似文献   

17.
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 microm nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 microm nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 microm) significantly inhibited basal and insulin-stimulated glucose uptake in adipocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 microm nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 microm nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degrees C. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.  相似文献   

18.
Reduction of the glucose concentration in the culture medium of 3T3-L1 adipose cells below 1.25 mM produces a 4-8-fold stimulation of 2-deoxyglucose uptake which starts after a lag phase of 2 h and is maximal after 10-16 h. In the present study, we employed the 'membrane sheet assay' in order to re-assess the contribution of the transporter isoforms GLUT1 and GLUT4 to this effect. Immunochemical assay of glucose transporters in membranes prepared with the 'sheet assay' revealed that the effect reflected a marked increase of GLUT1 in the plasma membrane with no effect on GLUT4. Glucose deprivation increased the total cellular GLUT1 protein in parallel with the transport activity, whereas GLUT4 was unaltered. The specific PI 3-kinase inhibitor wortmannin inhibited the effect of glucose deprivation on transport activity and also on GLUT1 synthesis. Glucose deprivation produced a moderate, biphasic increase in the activity of the protein kinase Akt/PKB that was inhibitable by wortmannin. When wortmannin was added after stimulation of cells in order to assess the internalization rate of transporters, the effect of insulin was reversed considerably faster (T1/2 = 18 min) than that of glucose deprivation (T1/2 > 60 min). These data are consistent with the conclusion that the effect of glucose deprivation reflects a specific, Akt-dependent de-novo synthesis of GLUT1, and not of GLUT4, and its insertion into a plasma membrane compartment which is distinct from that of the insulin-sensitive GLUT1.  相似文献   

19.
Insulin activates glucose transport by promoting translocation of the insulin-sensitive fat/muscle-specific glucose transporter GLUT4 from an intracellular storage compartment to the cell surface. Here we report that an optimal insulin effect on glucose uptake in 3T3-L1 adipocytes is dependent upon expression of both PIKfyve, the sole enzyme for PtdIns 3,5-P(2) biosynthesis, and the PIKfyve activator, ArPIKfyve. Small-interfering RNAs that selectively ablated PIKfyve or ArPIKfyve in this cell type depleted the PtdIns 3,5-P(2) pool and reduced insulin-activated glucose uptake to a comparable degree. Combined loss of PIKfyve and ArPIKfyve caused further PtdIns 3,5-P(2) ablation that correlated with greater attenuation in insulin responsiveness. Loss of PIKfyve-ArPIKfyve reduced insulin-stimulated Akt phosphorylation and the cell surface accumulation of GLUT4 or IRAP, but not GLUT1-containing vesicles without affecting overall expression of these proteins. ArPIKfyve and PIKfyve were found to physically associate in 3T3-L1 adipocytes and this was insulin independent. In vitro labeling of membranes isolated from basal or insulin-stimulated 3T3-L1 adipocytes documented substantial insulin-dependent increases of PtdIns 3,5-P(2) production on intracellular membranes. Together, the data demonstrate for the first time a physical association between functionally related PIKfyve and ArPIKfyve in 3T3-L1 adipocytes and indicate that the novel ArPIKfyve-PIKfyve-PtdIns 3,5-P(2) pathway is physiologically linked to insulin-activated GLUT4 translocation and glucose transport.  相似文献   

20.
To characterize the contribution of glycogen synthase kinase 3beta (GSK3beta) inactivation to insulin-stimulated glucose metabolism, wild-type (WT-GSK), catalytically inactive (KM-GSK), and uninhibitable (S9A-GSK) forms of GSK3beta were expressed in insulin-responsive 3T3-L1 adipocytes using adenovirus technology. WT-GSK, but not KM-GSK, reduced basal and insulin-stimulated glycogen synthase activity without affecting the -fold stimulation of the enzyme by insulin. S9A-GSK similarly decreased cellular glycogen synthase activity, but also partially blocked insulin stimulation of the enzyme. S9A-GSK expression also markedly inhibited insulin stimulation of IRS-1-associated phosphatidylinositol 3-kinase activity, but only weakly inhibited insulin-stimulated Akt/PKB phosphorylation and glucose uptake, with no effect on GLUT4 translocation. To further evaluate the role of GSK3beta in insulin signaling, the GSK3beta inhibitor lithium was used to mimic the consequences of insulin-stimulated GSK3beta inactivation. Although lithium stimulated the incorporation of glucose into glycogen and glycogen synthase enzyme activity, the inhibitor was without effect on GLUT4 translocation and pp70 S6 kinase. Lithium stimulation of glycogen synthesis was insensitive to wortmannin, which is consistent with its acting directly on GSK3beta downstream of phosphatidylinositol 3-kinase. These data support the hypothesis that GSK3beta contributes to insulin regulation of glycogen synthesis, but is not responsible for the increase in glucose transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号