首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. To identify the intermediates involved in the degradation of cholic acid, the further degradation of (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (IVa) by Arthrobacter simplex was attempted. The organism could not utilize this acid but some hypothetical intermediate metabolities of compound (IVa) were prepared for later use as reference compounds. 2. The nor homologue (IIIa) and the dinor homologue (IIIb) of compound (IVa) were prepared by exposure of 3-oxo-24-nor-5beta-cholan-23-oic acid (I) and (20S)-3beta-hydroxy-5-pregnene-20-carboxylic acid (II) to A. simplex respectively. These compounds correspond to the respective metabolites produced by the shortening of the valeric acid side chain of compound (IVa) in a manner analogous to the conventional fatty acid alpha- and beta-oxidation mechanisms. Their structures were confirmed by partial synthesis. 3. The following authentic samples of reduction products of the oxodicarboxylic acids (IIIa), (IIIb) and (IVa) were also synthesized as hypothetical metabolities: (4R)-4-[3aalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]valeric acid (Vb) and its nor homologue (VIIa) and dinor homologue (IXa);(4R)-4-[3Aaalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]-pentan-1-ol (Vc); and their respective 5beta epimers (Ve), (VIIc), (IXc) and (Vf). 4. In connexion with the non-utilization of compound (IVa) by A. simplex, the possibility that not all the metabolites formed from cholic acid by a certain micro-organism can be utilized by the same organism is considered.  相似文献   

2.
1. The metabolism of 3-(3a alpha-hexahydro-7a beta-methyl-1,5-dioxoindan-4 alpha-yl)propionic acid (III), which is a possible precursor of 2,3,4,6,6a beta, 7,8,9,9a alpha,9b beta-decahydro-6a beta-methyl-1H-cyclopenta[f]quinoline-3,7-dione (II) formed from cholic acid (I) by streptomyces rubescens, was investigated by using the same organism. 2. This organism effected amide bond formation, reduction of the carbonyl groups, trans alpha beta-desaturation and R-oriented beta-hydroxylation of the propionic acid side chain and skeleton cleavage, and the following metabolites were isolated as these forms or their derivatives: compound (II), 1,2,3,4 a beta,-5,6,6a beta,7,8,9a alpha,9b beta-dodecahydro-6a beta -methylcyclopental[f][1]benzopyran-3,7-dione (IVa), (1R)-1,2,3,4a beta,5,6,6a beta,7,8,9.9a alpha,9b beta-dodecahydro-1-hydroxy-6a beta-methylcyclopenta[f][1]benzopyran-3,7-dione (IVb), (E)-3-(3aalpha-hexahydro-5 alpha-hydroxy-7a beta-methyl-l-oxo-indan-4 alpha-yl)prop-2-enoic acid (V), (+)-(5R)-5-methyl-4-oxo-octane-1,8-dioic acid (VI), 3-(4-hydroxy-5-methyl-2-oxo-2H-pyran-6-yl)propionic acid (VII) and 3-(3a alpha-hexahydro-1 beta-hydroxy-7a beta-methyl-5-oxoindan-4 alpha-yl)propionic acid (VIII). The metabolites (IVb), (V), (VI) and (VII) were new compounds, and their structures were established by chemical synthesis. 3. The question of whether these metabolites are true degradative intermediates is discussed, and a degradative pathway of compound (III) to the possible precursor of compound (VII), 7-carboxy-4-methyl-3,5-dioxoheptanoyl-CoA (IX), is tentatively proposed. The further degradation of compound (IX) to small fragments is also considered.  相似文献   

3.
1. The further degradation of a cholic acid (I) metabolite, (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (IIa), by Corynebacterium equi was investigated. This organism effected ring-opening and gave (4R)-4-[2alpha-(2-carboxyethyl)-3beta-(3-carboxypropionyl)-2beta-methylcyclopent-1beta-yl]valeric acid (VI). The new metabolite was isolated as its trimethyl ester and identified by partical synthesis. It was not utilized by C. equi. 2. (4R)-4[4alpha-(2-Carboxyethyl)-3aalpha-decahydro-8abeta-methyl5-oxa-6-oxoazulen-1beta-yl]valeric acid (IVa), which is a hypothetical initial oxidation product in the above degradation, was not converted by C. equi into the expected metabolite (VI), but into 3 - [2beta - [(2S) - tetrahydro - 5 - oxofur - 2 - yl] - 1beta - methyl - 5 - oxocyclopent - 1alpha - yl]-propionic acid (VIII), the structure of which was established by partial synthesis. 3. Both the possible precursors of the metabolite (VI), an isomer of the epsilon-lactone (IVa), the gamma-lactone (XIa), and the open form of these lactones, the hydroxytricarboxylic acid (V), were also not utilized by C. equi. 4. Under some incubation conditions, C. equi also converted compound (IIa) and 3-(3aalpha-hexahydro-7abeta-methyl-1,5-dioxoindan-4alpha-yl)propionic acid (IIb) into 5-methyl-4-oxo-octane-1,8-dioic acid (III), (4R)-4-(2,3,4,6,6abeta,7,8,9,9aalpha,9bbeta-decahydro-6abeta-methyl-3-oxo-1H-cyclopenta[f]quinolin-7beta-yl)valeric acid (VII) and probably a monohydroxy derivative of compound (IIa) and compound (III), respectively. 5. The possibility that an initial step in the degradation of compound (IIa) by C. equi is oxygenation of the Baeyer-Villiger type, yielding compound (IVa), is discussed. Metabolic pathways of compound (IIa) to compounds (III), (VI), (VII) and (VIII) are also considered.  相似文献   

4.
The metabolism of cholic acid (I) by Streptomyces rubescens was investigated. This organism effected ring A cleavage, side-chain shortening and amide bond formation and gave the following metabolites: (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1 beta-yl]valeric acid (IIa) and its mono-amide (valeramide) (IIb); and 2,3,4,6, 6abeta,7,8,9,9aalpha,9bbeta-decahydro-6abeta-methyl-1H-cyclopenta[f]quinoline-3,7-dione(IIIe)and its homologues with the beta-oriented side chains, valeric acid, valeramide, butanone and propionic acid, in the place of the oxo group at C-7, i.e.compounds (IIIa), (IIIb), (IIIc) and (IIId) respectively. All the nitrogenous metabolites were new compounds, and their structures were established by partial synthesis except for the metabolite (IIIc). The mechanism of formation of these metabolites is considered. A degradative pathway of cholic acid (I) into the metabolites is also tentatively proposed.  相似文献   

5.
1. (4R)-4[4alpha-(2-Carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (II) could not be utilized by Arthrobacter simplex, even though the acid was one of the metabolites formed from cholic acid (I) by this organism. Therefore the further degradation of the acid (II) by Corynebacterium equi was investigated to identify the intermediates involved in the cholic acid degradation. 2. The organism, cultured in a medium containing the acid (II) as the sole source of carbon, produced unexpected metabolites, the conjugates of this original acid (II) with amino acids or their derivatives, although the yield was very low. These new metabolites were isolated and identified by chemical synthesis as the Na-((4R)-4-[4alpha-(2-carboxyethyl)-3a alpha-hexahydro-7a beta-methyl-5-oxoindan-1 beta-yl]-valeryl) derivatives of L-alanine, glutamic acid, O-acetylhomoserine and glutamine, i.e. compounds (IIIa), (IIIb), (IIId) respectively. 3. The possibility that the bacterial synthetic reaction observed in the acid (II) metabolism with C. equi is analogous to peptide conjugation known in both animals and higher plants is discussed. A possible mechanism for this bacterial conjugation is also considered.  相似文献   

6.
The metabolism of cholic acid by Arthrobacter simplex was investigated. This organism effected both ring a cleavage and elimination of the hydroxyl groups at C-7 and C-12 and gave a new metabolite, (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid, which was isolated and identified through its partial synthesis. A degradative pathway of cholic acid into this metabolite is tentatively proposed, and the possibility that the proposed pathway could be extended to the cholic acid degradation by other microorganisms besides A. simplex is discussed. The possibility that the observed reactions in vitro could occur during the metabolism of bile acids in vivo is considered.  相似文献   

7.
The hepatic metabolism of 3-oxoandrost-4-ene-17 beta-carboxylic acid (etienic acid), a probable acidic catabolite of deoxycorticosterone, was investigated using rats prepared with an external biliary fistula. Metabolic products were identified by GC-MS after hydrolysis with beta-glucuronidase and by proton nuclear magnetic resonance after chromatographic purification of protected glucuronides. About 80% of the injected dose was secreted into bile in 20 hours. Three fully reduced etianic acids (3 alpha-hydroxy-5 alpha-, 3 beta-hydroxy-5 alpha-, 3 alpha-hydroxy-5 beta-androstan-17 beta-carboxylic acids) were identified as were several of their di- and trihydroxylated congeners. Glucuronides of these reduced and/or hydroxylated metabolites constituted over half of the recovered dose, with carboxyl-linked glucuronides predominating over 3-hydroxyl-linked glucuronides. The mode of glucuronidation correlated well with the ability of liver microsomes to form the corresponding compounds in vitro from the set of four 3,5-diastereomeric etianic acids.  相似文献   

8.
The monohydroxylated fraction of bile acids of human meconium was analyzed by capillary GC-MS. In the sulfate-glucuronide fraction three saturated, and one unsaturated C20 steroidal acids were found. These acids were identified as 3 alpha-hydroxy-5 alpha-, 3 alpha-hydroxy-5 beta-,3 beta-hydroxy-5 alpha-androstane-17 beta-carboxylic, and 3 beta-hydroxyandrost-5-ene-17 beta-carboxylic based on the unequivocal GC-MS comparison with standards of all possible epimers at C-3, 5 and 17. The amount of the major C20 acid, 3 alpha-hydroxy-5 alpha-androstane-17 beta-carboxylic, in meconium was 0.2 nmol/g, i.e. 5 to 10 times the amount of lithocholic acid. To prevent the oxidation of 21-hydroxy-20-oxopregnanes to C20 acids meconium was extracted in the presence of sodium borohydride. In the absence of this reducing agent the amount of 3 beta-hydroxyandrost-5-ene-17 beta-carboxylic acid was increased and its 17 alpha-epimer could be detected. This indicates partial artifactual formation of this C20 acid from 21-hydroxypregnenolone, which is known to be present in human meconium. The amount of the saturated C20 acids was unaffected by the presence of sodium borohydride in the extraction medium, and their native occurence in human meconium was further confirmed by the absence of their 17 alpha-epimers in extracts obtained both with and without borohydride. The probable metabolic origin of C20 acids in the fetal-placental-maternal unit is discussed.  相似文献   

9.
The bacterial degradation of hyodeoxycholic acid under anaerobic conditions was studied. The major acidic product has been identified as 6 alpha-hydroxy-3-oxochol-4-ene-24-oic acid whilst the major neutral product has been identified as 6 alpha-hydroxyandrosta-1,4-diene-3,17-dione. The minor acidic products were 3,6-dioxochola-1,4-diene-24-oic acid, 3-oxochol-5-ene-24-oic acid, 3-oxochol-4-ene-24-oic acid, 3-oxochola-1,4-diene-24-oic acid and 6 alpha-hydroxy-3-oxochola-1,4-diene-24-oic acid and the minor neutral products were androst-4-ene-3,17-dione, androst-4-ene-3,6,17-trione, androsta-1,4-diene-3,6,17-trione, androsta-1,4-diene-3,17-dione, 17 beta-hydroxyandrosta-1,4-diene-3-one and 6 alpha-hydroxyandrost-4-ene-3,17-dione. Evidence is presented which suggests that under aerobic conditions, one pathway of hyodeoxycholic acid metabolism exists whilst under anaerobic conditions an extra biotransformation pathway becomes operative involving the induction of a 6 alpha-dehydroxylase enzyme. A biochemical pathway of hyodeoxycholic acid metabolism by bacteria under anaerobic conditions is discussed incorporating a scheme involving such an enzyme.  相似文献   

10.
Bovine adrenocortical mitochondria were sonicated and subjected to extraction with sodium cholate. The extract contained not only cytochrome P-450 activities, but also an activity which catalyzed the conversion of deoxycorticosterone to an unknown steroid (designated X). The latter activity was concentrated by (NH4)2SO4 fractionation in the presence of sodium cholate, and separated from P-450 by taking advantage of their different solubilities in phosphate buffer without sodium cholate. The specific activity of the partially purified enzyme fraction was 70 times higher than that of sonicated mitochondria. The conversion of deoxycorticosterone to steroid X required NAD or NADP. The conversion rate was dependent on the concentration of deoxycorticosterone. The major product, steroid X, was isolated from the reaction mixture by means of silicic acid and Iatrobeads column chromatography. The steroid was characterized as 3-keto-4-etienic acid (3-oxoandrost-4-ene-17beta-carboxylic acid). This result suggests that an enzyme system for the conversion of deoxycorticosterone to 3-keto-4-etienic acid exists in adrenocortical mitochondria.  相似文献   

11.
Linear oligoesters based on etienic acid (3beta-hydroxyandrost-5-ene-17beta-carboxylic acid) containing four steroid units were prepared using a 2+2 synthetic strategy in a successful synthesis of 3beta-{[3beta-({3beta-[(3beta-hydroxyandrost-5-ene-17beta-carbonyl)oxy]androst-5-ene-17beta-carbonyl}oxy)androst-5-ene-17beta-carbonyl]oxy}androst-5-ene-17beta-carboxylic acid. The main problems with deprotection were overcome by using orthogonal groups as O-nitrates and 2-(trimethylsilyl)ethyl ethers.  相似文献   

12.
It has been postulated that 3-(3-oxo-7alpha-methylthio-4-androsten-17alpha-yl)propionic acid gamma-lactone (I) is a key intermediate in the metabolism of the anti-aldosterone agent, spironolactone (3-[3-oxo-7alpha-acetylthio-17beta-hydroxy-4-androsten-17alpha-yl] propionic acid gamma-lactone). In the present study it was found that microbial oxygenation of I by Chaetomium cochloides QM 624 gave three metabolites which retained sulfur in their molecules and were found to be identical to the human metabolites of spironolactone.  相似文献   

13.
The stereospecificity of mechanisms for hepatic transport of short-chain bile acids has been examined by following the hepatic metabolism and biliary secretion of 3 beta-hydroxy-5 beta-androstane-17 beta-carboxylic acid (isoetianic acid) administered in two different labeled forms to rats prepared with an external biliary fistula. While 93% of the administered [2,2,4,4-3H]isoetianic acid was recovered in bile after 20 h, only 18% of a similar dose of [3 alpha-3H]isoetianic acid was secreted in bile over the same time period. The recovered radioactivity of the latter compound was mainly associated with bile water. With the [2,2,4,4-3H]isoetianic acid, the bulk of the biliary isotope was determined to be in the form of two glucuronide conjugates. Spectral analysis identified these metabolites as the hydroxyl-linked (major) and carboxyl-linked (minor) beta-glucuronides, not of the 3 beta-hydroxy compound administered, but of 3 alpha-hydroxy-5 beta-androstane-17 beta-carboxylic acid (etianic acid), i.e., the products of hydroxyl group inversion. It is concluded that isoetianic acid is efficiently cleared from plasma and conjugated with glucuronic acid after its epimerization to etianic acid. The prevalent, but not complete, loss of the 3-tritium atom and the retention of the 2- and 4-tritium atoms probably indicates a 3-oxo-5 beta-androstane-17 beta-carboxylic acid intermediate with partial return of the label via a limited labeled pool of reduced nicotinamide cofactor.  相似文献   

14.
The spores of Fusarium solani reduced the C(2)-carbonyl group, 1-dehydrogenated ring "A" and cleaved the side chain of 16alpha, 17alpha-oxidopregn-4-ene-3, 20-dione (16alpha, 17alpha-oxidoprogesterone)(I) to give the following products: 20alpha-hydroxy-16alpha, 17alpha-oxidopregn-4-en-3-one(II); 20alpha-hydroxy-16alpha, 17alpha-oxidopregna-1, 4-dien-3-one(III); 16alpha-hydroxy-17a-oxa-androsta-1, 4-diene-3, 17-dione (16alpha-hydroxy-1-dehydrotestololactone)(IV); and 16alpha, 17beta-dihydroxy-androsta-1, 4-dien-3-one (16alpha-hydroxy-1-dehydrotestosterone)(V). When II was used as a substrate, it was metabolized into III, IV, and V at a slower rate than I. Furthermore, 16alpha-hydroxy-androst-4-ene-3, 17-dione (16alpha-hydroxyandrostenedione)(X) was transformed into IV and V. Pregn-4-ene-3, 20-dione (progesterone)(XII) was transformed into androsta-1, 4-diene-3, 17-dione (androstadienedione)(VIII) and 17a-oxa-androsta-1, 4-diene-3, 17-dione (1-dehydrotestololactone)(IX), while 17alpha-hydroxy-pregn-4-ene-3, 20-dione (17alpha-hydroxyprogesterone)(VI) was converted into its 1-dehydro analogue (VII) without accumulation of any 20-dihydro compounds. Substrate specificity in the 20-reductase system of F. solani, Cylindrocarpon radicicola, Septomyxa affinis, Bacillus lentus, and three strains of B. sphaericus are demonstrated. The 20-reductase is active only on steroids having the 16alpha, 17alpha-oxido, and Delta(4)-3-keto functions. Evidence of competition between side-chain degrading enzymes and the 20-reductase for the steroid molecule and evidence of side-chain degradation followed by epoxide cleavage (and not the reverse) are presented. A mechanism for the epoxide opening by nongerminating spores of F. solani is postulated.  相似文献   

15.
When uridine (Ia) is reacted with thionyl chloride in hexamethylphosphoric triamide a mixture of isomeric 5'-chloro-2',3'-sulphites is formed, which can be separated to individual epimers IIa and IIIa, in 45% and 15% yields, respectively. Analogously, crystalline epimers IIb (37%) and IIIb (17%) can be obtained from 5-fluorouridine (Ib). Both isomers IIa, IIIa (or IIb, IIIb) afford a single 5'-chloro derivative IVa (or IVb, respectively) if treated with 0.1N sodium methoxide. From the mixture of sulphites IIa and IIIa (or IIb and IIIb) crystalline 5'-chlorouridine IVa is formed in 84.5% yield, calculated per starting uridine Ia (or crystalline 5'-chloro-5-fluorouridine IVb, 85.5% per starting 5-fluorouridine Ib, respectively). On reduction of 5'-chlorouridine IVa with tributyltin hydride 5'-deoxyuridine (Va) is formed in 79% yield. During the reduction of 5'-chloro-5-fluoro derivative IVb to 5'-deoxy-5-fluorouridine (Vb, 57%) a partial reductive elimination of 5-fluorine takes place under formation of 5'-deoxyuridine (Va, 9%).  相似文献   

16.
The bacterial degradation of cholic acid under anaerobic conditions by Pseudomonas sp. N.C.I.B. 10590 was studied. The major unsaturated neutral compound was identified as 12 beta-hydroxyandrosta-4,6-diene-3,17-dione, and the major unsaturated acidic metabolite was identified as 12 alpha-hydroxy-3-oxochola-4,6-dien-24-oic acid. Eight minor unsaturated metabolites were isolated and evidence is given for the following structures: 12 alpha-hydroxyandrosta-4,6-diene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-4,6-dien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 beta-hydroxyandrosta-1,4,6-triene-3,17-dione, 12 beta,17 beta-dihydroxyandrosta-1,4,6-trien-3-one, 12 alpha-hydroxyandrosta-1,4-diene-3,17-dione, 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, 3,12-dioxochola-4,6-dien-24-oic acid and 12 alpha-hydroxy-3-oxopregna-4,6-diene-20-carboxylic acid. In addition, a major saturated neutral compound was isolated and identified as 3 beta,12 beta-dihydroxy-5 beta-androstan-17-one, and the only saturated acidic metabolite was 7 alpha,12 alpha-dihydroxy-3-oxo-5 beta-cholan-24-oic acid. Nine minor saturated neutral compounds were also isolated, and evidence is presented for the following structures: 12 beta-hydroxy-5 beta-androstane-3,17-dione, 12 alpha-hydroxy-5 beta-androstane-3,17-dione, 3 beta,12 alpha-dihydroxy-5 beta-androstan-17-one, 3 alpha,12 beta-androstan-17-one, 3 alpha,12 alpha-dihydroxy-5 beta-androstan-17-one, 5 beta-androstane-3 beta,12 beta,17 beta-triol, 5 beta-androstane-3 beta,12 alpha,17 beta-triol, 5 beta-androstane-3 alpha,12 beta,17 beta-triol and 5 beta-androstane-3 alpha,12 alpha,17 beta-triol. The induction of 7 alpha-dehydroxylase and 12 alpha-dehydroxylase enzymes is discussed, together with the significance of dehydrogenation and ring fission under anaerobic conditions.  相似文献   

17.
1. The synthesis of a number of 19-substituted androgens is described. 2. A method for the partially stereospecific introduction of a tritium label at C-19 in 19-hydroxyandrost-5-ene-3beta,17beta-diol was developed. The 19-(3)H-labelled triol produced by reduction of 19-oxoandrost-5-ene-3beta,17beta-diol with tritiated sodium borohydride is tentatively formulated as 19-hydroxy[(19-R)-19-(3)H]androst-5-ene-3beta,17beta-diol and the 19-(3)H-labelled triol produced by reduction of 19-oxo[19-(3)H]-androst-5-ene-3beta,17beta-diol with sodium borohydride as 19-hydroxy[(19-S)-19-(3)H]-androst-5-ene-3beta,17beta-diol. 3. In the conversion of the (19-R)-19-(3)H-labelled compound into oestrogen by a microsomal preparation from human term placenta more radioactivity was liberated in formic acid (61.6%) than in water (38.4%). In a parallel experiment with the (19-S)-19-(3)H-labelled compound the order of radioactivity was reversed: formic acid (23.4%), water (76.2%). 4. These observations are interpreted in terms of the removal of the 19-S-hydrogen atom in the conversion of a 19-hydroxy androgen into a 19-oxo androgen during oestrogen biosynthesis. 5. It is suggested that the removal of C-19 in oestrogen biosynthesis occurs compulsorily at the oxidation state of a 19-aldehyde with the liberation of formic acid.  相似文献   

18.
Twelve neuroactive and neuroprotective steroids, androgens and androgen precursors i.e. 3alpha,17beta-dihydroxy-5alpha-androstane, 3alpha-hydroxy-5alpha-androstan-17-one, 3alpha-hydroxy-5beta-androstan-17-one, androst-5-ene-3beta,17beta-diol, 3beta,17alpha-dihydroxy-pregn-5-en-20-one (17alpha-hydroxy-pregnenolone), 3beta-hydroxy-androst-5-en-17-one (dehydroepiandrosterone, DHEA), testosterone, androst-4-ene-3,17-dione (androstenedione), 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone), 3beta-hydroxy-pregn-5-en-20-one (pregnenolone), 7alpha-hydroxy-DHEA, and 7beta-hydroxy-DHEA were measured using the GC-MS system in young men before and after ejaculation provoked by masturbation. The circulating level of 17alpha-hydroxypregnenolone increased significantly, whereas the other circulating steroids were not changed at all. This fact speaks against the hypothesis that a drop in the level of neuroactive steroids, e.g. allopregnanolone may trigger the orgasm-related increase of oxytocin, reported by other authors.  相似文献   

19.
The conversion of a molecule of 19-oxoandrost-4-ene-3,17-dione [1a] to estrone [2a] by human placental aromatase requires a molecule of oxygen and of NADPH. An atom of this molecule of oxygen is incorporated into the extruded formic acid derived from C-19 of [1a]. It was proposed that the 02 is utilized for the enzymatic 2β-hydroxylation of [1a] and the released intermediate 2β-hydroxy-19-oxoandrost-4-ene-3, 17-dione [5a]aromatizes nonenzymatically. Should [5a] be an obligatory intermediate of estrogen biosynthesis, then all the oxygen of its 2β-hydroxyl must be incorporated into the extruded formic acid. We have previously synthesized [2β-180;19-3H][5c] and proved that none of its 2β-180 was incorporated in the formic acid extruded in the aromatization. On this basis we concluded that [5a] can not be an obligatory precursor of estrogen biosynthesis.

The trapping of radioactive androst-4-ene-2β,3β,17β,19-tetrol in a reductively terminated incubation of a mixture of radioactive androst-4-ene-3, 17-dione and [5a] with crude placental aromatase was interpreted as evidence in support of the intermediacy of [5a]. We confirmed that the tetrol can indeed be trapped in the reductively terminated incubations. However, considering that the crude placental enzyme preparation very likely contains numerous activated oxygen species capable of a variety of oxidation reactions, most of which may not be related to estrogen elaboration, and in view of our results quoted above, the origin and the eventual biosynthetic role of the parent compound of the tetrol remains to be determined.  相似文献   


20.
M Harnik  S Carmely  M Cojocaru  Y Kashman 《Steroids》1986,47(2-3):205-213
A four-step synthesis of 18,19-dihydroxycorticosterone 5c, starting with 19,21-dihydroxy-3,20-dioxopregn-5-ene-18,11 beta-lactone-di-(ethylene ketal) 2, is presented. Reduction of 2 with sodium aluminum bis-(methoxyethoxy)hydride gave 11 beta,18,19,21-tetrahydroxy-pregn-5-ene-3,20-dione-di-(ethylene ketal) 3a. Acetylation furnished the corresponding 18,19,21-triacetate 3b, which on treatment with a mixture of perchloric and acetic acids gave 18,19-dihydroxycorticosterone 18,19,21-triacetate 4b. Mild saponification yielded the title compound which, on the basis of ir and nmr spectra, exists as one C-20 isomer of the hemiacetal structure 5c. Periodate oxidation of 5c gave the expected 11 beta, 19-dihydroxy-3-oxoandrost-4-ene-17 beta, 18-carbolactone 6b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号