首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The purpose of this study was to examine whether cardiorespiratory responses to combined rhythmic exercise (60 contractions · min–1) was affected by different combinations of upper and lower limb exercise in seven healthy women. Six different rhythmic exercises were compared: 6-min rhythmic handgrip at 10% of isometric maximal voluntary contraction (MVC) (H10); 6-min rhythmic plantar flexion at 10% MVC (P10); exhausting rhythmic handgrip at 50% MVC (H50); exhausting rhythmic plantar flexion at 50% MVC (P50); H50 was added to P10 (P1OH50); and P50 was added to H10 (H10P50). Exercise duration, after handgrip was combined with plantar flexion (P10H50), was shorter than that of H50, although the exercise duration of HIOP50 was not significantly different from P50. No significant difference was found between the difference from rest in oxygen uptake ( O2) during H10P50 and the sum of O2 during H10 and P50. Also, the differences from rest in forearm blood flow ( FBF) and calf blood flow ( CBF) during H10P50 were not significantly different from FBF in H10 and from CBF in P50. In contrast, O2 in P10H50 was lower than the sum of O2 in P10 and H50 (P < 0.05), and J FBF in P10H50 was lower than that in H50 (P < 0.05) , while CBF was not significantly different between P1OH50 and P10. The changes in heart rate from rest (d HR) during the combined exercises were lower than the sums of HR in the corresponding single exercises (P < 0.05). These results demonstrated an inhibitory summation of several cardiorespiratory responses to combined exercise resulting in a reduction in exercise performance which would seem to occur easily when upperlimb exercise is added to lower limb exercise.  相似文献   

3.
4.
Cardiovascular response to exercise in younger and older men   总被引:2,自引:0,他引:2  
Measurements of cardiac performance for humans at various ages is influenced by the variable examined, the population and techniques employed, and the factors that co-vary with age, including the presence of disease and physical conditioning. Interstudy differences in the extent to which occult coronary disease is present in older subjects and in the level of physical conditioning among subjects may underlie the variable perspectives contained in the literature of how aging affects cardiovascular function. In carefully screened, highly motivated but not athletically trained community-dwelling subjects, resting cardiovascular parameters are not age related except for systolic blood pressure, which increases with age. During vigorous exercise the mechanisms used to achieve a high level of cardiac output shift from a dependence on a catecholamine-mediated increase in heart rate and inotropy to a dependence on the Frank Starling mechanism. One reason for the age difference in cardiovascular response to exercise may be a diminished responsiveness to beta-adrenergic stimulation in these subjects. In other elderly subjects who cannot exercise to high work loads, a decline in stroke volume as well as heart rate at peak exercise has been observed. Whether the inability of these individuals to augment stroke volume is caused by a decrease in the ability of the heart to increase diastolic filling, by a decrease in systolic pump function caused by an increased afterload, by intrinsic myocardial contractile defects, or by a greater diminution of the cardiovascular response to beta-adrenergic stimuli is presently unknown.  相似文献   

5.
The purpose of this study was to determine the effects of a single bout of resistance exercise on immune cell numbers of moderately active men. Subjects were 16 male volunteers (mean +/- standard deviation [SD] age 30 +/- 7 years, height 180.1 +/- 7.0 cm, mass 83.97 +/- 10.33 kg); 8 were randomly assigned to treatment and 8 to control groups. Treatment was a common resistance training routine (3 sets of 8-10 repetitions at 75% of 1 repetition maximum) of 8 large muscle mass exercises using resistance machines. Blood samples were drawn before exercise and at 0 minutes (P0), 15 minutes (P15), and 30 minutes (P30) postexercise. Control subjects sat quietly in the training facility; blood was drawn at the same intervals as treatment. Leukocyte and lymphocyte (LY) subpopulation numbers were determined. Statistical analysis was analysis of variance (ANOVA) (repeated measures, p < or = 0.050) and multiple comparisons (Dunn method) to isolate variability. All leukocyte subpopulations, except basophils (BA) and eosinophils (EO), increased and counts declined by P15 and P30. Only neutrophils (NE) did not return to preexercise levels by P30. The majority of resistance exercise induced leukocytosis was due to an increase in circulating LY (natural killer cells increased most, CD4+/CD8+ ratio unchanged) and monocytes (MO). The transient, inconsequential immune cell population responses to resistance exercise are similar to those during aerobic activity. The lack of large alterations in and rapid recovery from cell number changes suggests that resistance exercise is not immunosuppressive.  相似文献   

6.
7.
The ventilatory and heart rate responses to exercise were studied in four experienced high-altitude climbers at sea level and during a 6-wk period above 4,500 m to discover whether their responses to hypoxia were similar to those of high-altitude natives. Comparison was made with results from four scientists who lacked their frequent exposure to extreme altitude. The climbers had greater Vo2max at sea level and altitude but similar ventilatory responses to increasing exercise. On acute hypoxia at sea level their ventilatory response was less than that of scientists. Their heart rate response did not differ from that of scientists at sea level, but with acclimatization the reduction in response was significantly greater. Alveolar gas concentrations were similar after acclimatization, but climbers achieved these changes more rapidly. The increase in hematocrit was similar in the two groups. It is concluded that these climbers, unlike high-altitude residents, have cardiorespiratory responses to exercise similar to those of other lowlanders except that their ventilatory response was lower and the reduction in their heart rate response was greater.  相似文献   

8.
9.
The purpose of this study is to examine the cardiovascular and metabolic responses between dynamic and static exercise when a leg press exercise is performed. Seven participants (20-21 yrs) were recruited for the experiment. Four modes of dynamic or static leg press exercise were assigned in two combined conditions: a unilateral or a bilateral condition and two exercise intensities with 20% and 40% of maximal voluntary contraction (20% MVC, 40% MVC). The duration of the dynamic exercise and the static exercise at 20% MVC was six minutes, and the static exercise at 40% MVC was three minutes. In the dynamic exercise, ventilation (VE), O2 uptake (VO2), heart rate (HR), and systolic and diastolic blood pressures (SBP, DBP) reached the steady-state after 3 min exercise, while in the static leg press, these responses continued to increase at the end of exercise. The alteration in VO2 mostly depended on both exercise intensity and the one- or two-leg condition during the dynamic leg press, whereas no significant difference in VO2 during the static leg press was found in the four modes. The alterations in rate-pressure product (RPP) depended solely on exercise intensity and leg condition. These findings suggest that the static leg press causes a greater rise in HR, SBP, and DBP. In addition, RPP appears particularly sensitive to experimental modes.  相似文献   

10.
The skeletal muscle capillary supply is an important determinant of maximum exercise capacity, and it is well known that endurance exercise training increases the muscle capillary supply. The muscle capillary supply and exercise-induced angiogenesis are regulated in part by vascular endothelial growth factor (VEGF). VEGF is produced by skeletal muscle cells and can be secreted into the circulation. We investigated whether there are differences in circulating plasma VEGF between sedentary individuals (Sed) and well-trained endurance athletes (ET) at rest or in response to acute exercise. Eight ET men (maximal oxygen consumption: 63.8 +/- 2.3 ml x kg(-1) x min(-1); maximum power output: 409.4 +/- 13.3 W) and eight Sed men (maximal oxygen consumption: 36.3 +/- 2.1 ml x kg(-1) x min(-1); maximum power output: 234.4 +/- 13.3 W) exercised for 1 h at 50% of maximum power output. Antecubital vein plasma was collected at rest and at 0, 2, and 4 h postexercise. Plasma VEGF was measured by ELISA analysis. Acute exercise significantly increased VEGF at 0 and 2 h postexercise in ET subjects but did not increase VEGF at any time point in Sed individuals. There was no difference in VEGF between ET and Sed subjects at any time point. When individual peak postexercise VEGF was analyzed, exercise did increase VEGF independent of training status. In conclusion, exercise can increase plasma VEGF in both ET athletes and Sed men; however, there is considerable variation in the individual time of the peak VEGF response.  相似文献   

11.
Objective: Inflammation has been found to play a role in the etiology of cardiovascular disease as well as provoke endothelial dysfunction. Inflammatory cytokines associated with endothelial function are interleukin‐6 (IL‐6) and tumor necrosis factor‐α (TNF‐α). IL‐6 is exercise intensity dependent and has been shown to inhibit TNF‐α expression directly. The aim of this study was to investigate the interaction of IL‐6 and TNF‐α on endothelial function in response to acute exercise in overweight men exhibiting different physical activity profiles. Methods and Procedures: Using a randomized mixed factorial design, 16 overweight men (8 active, maximal exercise capacity (VO2peak) = 34.2 ± 1.7, BMI = 27.4 ± 0.7 and 8 inactive, VO2peak = 30.9 ± 1.2, BMI = 29.3 ± 1.0) performed three different intensity acute exercise treatments. Brachial artery flow‐mediated dilation (FMD) and subsequent blood samples were taken pre‐exercise and 1 h following the cessation of exercise. Results: Independent of exercise intensity, the active group displayed a 24% increase (P = 0.034) in FMD following acute exercise compared to a 32% decrease (P = 0.010) in the inactive group. Elevated (P < 0.001) concentrations of IL‐6 following moderate (50% VO2) and high (75% VO2) intensity acute exercise were observed in both groups; however, concentrations of TNF‐ α were unchanged in response to acute exercise (P = 0.584). Discussion: The FMD response to acute exercise is enhanced in active men who are overweight, whereas inactive men who are overweight exhibit an attenuated response. The interaction of IL‐6 and TNF‐ α did not provide insight into the physiological mechanisms associated with the disparity of FMD observed between groups.  相似文献   

12.
Kinetics of oxygen uptake at the onset of exercise in boys and men   总被引:3,自引:0,他引:3  
The objective of this study was to compare theO2 uptake(O2) kinetics at the onsetof heavy exercise in boys and men. Nine boys, aged 9-12 yr, and 8 men, aged 19-27 yr, performed a continuous incremental cyclingtask to determine peak O2(O2 peak).On 2 other days, subjects performed each day four cycling tasks at 80 rpm, each consisting of 2 min of unloaded cycling followed twice bycycling at 50%O2 peak for 3.5 min,once by cycling at 100%O2 peak for 2 min,and once by cycling at 130%O2 peak for 75 s.O2 deficit was not significantlydifferent between boys and men (respectively, 50%O2 peak task: 6.6 ± 11.1 vs. 5.5 ± 7.3 ml · min1 · kg1;100% O2 peak task:28.5 ± 8.1 vs. 31.8 ± 6.3 ml · min1 · kg1;and 130%O2 peaktask: 30.1 ± 5.7 vs. 35.8 ± 5.3 ml · min1 · kg1).To assess the kinetics, phase I was excluded from analysis. Phase IIO2 kinetics could bedescribed in all cases by a monoexponential function. ANOVA revealed nodifferences in time constants between boys and men (respectively, 50%O2 peaktask: 22.8 ± 5.1 vs. 26.4 ± 4.1 s; 100%O2 peak task: 28.0 ± 6.0 vs. 28.1 ± 4.4 s; and 130%O2 peak task: 19.8 ± 4.1 vs. 20.7 ± 5.7 s). In conclusion, O2 deficit and fast-componentO2 on-transientsare similar in boys and men, even at high exercise intensities, whichis in contrast to the findings of other studies employing simplermethods of analysis. The previous interpretation that children relyless on nonoxidative energy pathways at the onset of heavy exercise isnot supported by our findings.

  相似文献   

13.
14.
15.
Mongrel dogs (n = 34) were used to record the cardiovascular responses during submaximal exercise-tolerance tests (ETT) before and after the placement of lesions in rostral portions of the cerebellar fastigial nucleus (FN). Sterile surgical procedures were used to implant solid-state pressure transducers into the left ventricle or descending aorta (anesthesia 1% halothane in O2) and multipolar stainless steel electrodes into FN (anesthesia alpha-chloralose 115 mg/kg iv). Heart rate (HR), maximal left ventricular systolic pressure ( LVPmax ) and its first derivative ( dLVP /dt), and mean arterial blood pressure (MAP) were recorded during a motorized treadmill ETT. Electrolytic direct-current or radio-frequency lesions were made through the indwelling FN electrodes, and the ETT was repeated following 10-14 days recovery. Two-way analysis of variance (ANOVA), with repeated measures on one, and one-way ANOVA for simple effects indicated a significant reduction in HR and MAP (P less than 0.01) but not LVPmax and dLVP /dt occurred during exercise as a result of rostral FN lesions. Although the trend for reduced LVPmax and dLVP /dt was also evident, a relatively greater decrease in blood pressure occurred in the peripheral vasculature during exercise. It was concluded that FN acts as a modulator of HR and MAP during dynamic exercise because of the observed deficits, and because FN is known to both send efferent projections to medullary vasomotor areas and receive projections from motor cortex and muscle and joint afferents.  相似文献   

16.
Noninvasive polygraphic tracings obtained at rest and during isometric hand-grip exercise were analysed in 67 healthy subjects. The purpose of the study was to determine the response of noninvasive polygraphic parameters to isometric exercise. During the third minute of sustained squeezing of a balloon dynamometer (30% of maximal voluntary contraction) a significant increase occurred in heart rate (+16.8 +/- 10.7 beats/min) an increase in both systolic and diastolic blood pressure (+3.4 +/- 1.6 kPa and 2.6 +/- 1.7 kPa respectively), increase in apexcardiographic index 100.a/D (+14.5 +/- 15.0% "D" amplitude), decrease of diastolic amplitude time index square root 2-c/(2-0) X (a/D) (-20.1 +/- 26.5), shortening of pulse transmission time (-0.006 +/- 0.005 s) and prolongation of cardiac cycle length corrected for left ventricular ejection time (+0.011 +/- 0.010 s) discussed. All these changes were statistically significant.  相似文献   

17.
18.
19.
The effect of low muscle temperature on the response to dynamic exercise was studied in six healthy men who performed 42 min of exercise on a cycle ergometer at an intensity of 70% of their maximal O2 uptake. Experiments were performed under control conditions, i.e. from rest at room temperature, and following 45 min standing with legs immersed in a water bath at 12 degrees C. The water bath reduced quadriceps muscle temperature (at 3 cm depth) from 36.4 (SD 0.5) degrees C to 30.5 (SD 1.7) degrees C. Following cooling, exercise heart rate was initially lower, the mean difference ranged from 13 (SD 4) beats.min-1 after 6 min of exercise, to 4 (SD 2) beats.min-1 after 24 min of exercise. Steady-state oxygen uptake was consistently higher (0.2 l.min-1). However, no difference could be discerned in the kinetics of oxygen uptake at the onset of exercise. During exercise after cooling a significantly higher peak value was found for the blood lactate concentration compared to that under control conditions. The peak values were both reached after approximately 9 min of exercise. After 42 min of exercise the blood lactate concentrations did not differ significantly, indicating a faster rate of removal during exercise after cooling. We interpreted these observations as reflecting a relatively higher level of muscle hypoxia at the onset of exercise as a consequence of a cold-induced vasoconstriction. The elevated steady-state oxygen uptake may in part have been accounted for by the energetic costs of removal of the extra lactate released into the blood consequent upon initial tissue hypoxia.  相似文献   

20.
This study examined the cortisol response to incremental exercise; specifically to see if there was an increase in blood cortisol levels at low intensity exercise (i.e., < 60% VO2 intensity threshold) and determine whether a linear relationship existed between the blood cortisol responses and exercise of increasing workloads (i.e., intensity). Healthy, physically active young men (n = 11) completed exercise tests involving progressive workload stages (3 min) to determine peak oxygen uptake responses (VO2). Blood specimens were collected at rest and at the end of each stage and analyzed for cortisol. Results showed cortisol was significantly increased from resting levels at the end of the first exercise stage (80 W; 41.9 +/- 5.4% peak VO2) and remained significantly elevated from rest until the exercise ended. Interestingly, however, the cortisol concentrations observed at 80 W through 200 W did not significantly differ from one another. Thereafter, during the final two stages of exercise the cortisol concentrations increased further (p < 0.01). The subjects exceeded their individual lactate thresholds over these last two stages of exercise. Regression modeling to characterize the cortisol response resulted in significant regression coefficients (r = 0.415 [linear] and r = 0.655 [3rd order polynominal], respectively; p < 0.05). Comparative testing (Hotelling test) between the two regression coefficents revealed the polynominal model (sigmoidal curve) was the significantly stronger of the two (p = 0.05). In conclusion, the present findings refute the concept that low intensity exercise will not provoke a significant change in blood cortisol levels and suggest the response to incremental exercise involving increasing exercise workloads (i.e., intensities) are not entirely linear in nature. Specifically, a sigmoid curve more highly accurately characterizes the cortisol response to such exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号