首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospho-N-acetylmuramyl-pentapeptide translocase, the initial membrane enzyme in the biosynthesis of peptidoglycan, requires a lipid microenvironment for function. n-Butanol was reversibly intercalated into membranes to perturb the hydrophobic interactions in this microenvironment in order to define further the role of lipid. In the concentration range for maximal stimulation of enzymic activity (0.12–0.18 M), n-butanol causes a 40% decrease in the fluorescence emission of the dansylated product, undecaprenyl diphosphate-(N?-dansyl)pentapeptide. Since no change in emission maximum occurs below 22°C in the presence of 0.12 M n-butanol, it is concluded that intercalation of this alkanol causes an increase in fluidity. Above 22°C this concentration of n-butanol causes both a decrease in the fluorescence emission and a red shift in the emission maximum. It is concluded that a polarity change as well as fluidity change occurs above 22°C. n-Butanol also causes a significant change in the phase transition experienced by the dansylated lipid product. Thus, it is possible with n-alkanols, e.g. n-butanol, to perturb lipid-translocase interactions resulting in an increase in fluidity in the microenvironment of the enzyme. This change in fluidity correlates with a stimulation of enzymic activity.  相似文献   

2.
We demonstrate F?rster resonance energy transfer from dehydroergosterol to dansylated lecithin in lecithin-cholesterol vesicles and characterize the vesicles in the presence of the pro-nucleating enzyme, phospholipase C (PLC). Exposure to phospholipase C causes a temporary decrease in the dehydroergosterol to dansyl fluorescence ratio followed by an increase to and above the initial value. The temporary decrease in the fluorescence ratio results from an increase in the dansylated lecithin intensity that coincides with a dansyl blue shift. The extent of the blue shift correlates with the level of diacylglycerol generated in situ by PLC, suggesting an increased association between dansylated lecithin and cholesterol as membrane fluidity increases and membrane polarity decreases. The subsequent increase in the fluorescence ratio results from both an increase in the dehydroergsterol intensity and a concomitant decrease in the dansylated lecithin intensity of equal magnitude. This signifies a reduction in energy transfer from dehydroergosterol to dansylated lecithin and indicates an increased separation between the two fluorophores. The increase in the fluorescence ratio persists beyond the time scales for vesicle aggregation and fusion, as measured by turbidity, and precedes the onset of macroscopic cholesterol crystals observed with an optical microscope. Thus, the increased separation between dehydroergosterol and dansylated lecithin is consistent with a mechanism of cholesterol nucleation from the vesicles. Moreover, the onset and rate of increase in the fluorescence ratio correlate with the cholesterol:lecithin mole ratio of the vesicles. Fluorescence energy transfer from dehydroergosterol to dansylated lecithin therefore shows potential as a methodology for measuring cholesterol nucleation in model bile.  相似文献   

3.
竹红菌甲素对红细胞膜内脂双层的微扰   总被引:3,自引:0,他引:3  
In this paper, using human erythrocyte membrane, the effect of Hypocrellin A on the lipid bilayer of the membrane was studied by measuring the change of the fluidity of the membrane, the energy transfer of the fluorescent probes, the shift of the fluorescent emission peaks, and the split of band-a of Hypocrellin A. The results showed that in the presence of HA, the fluidity of erythrocyte membrane was increased, the fluorescence intensity of the probes was decreased, and the fluorescence peaks shifted blue. These phenomena took place more seriously with the increment of HA concentration. Meanwhile, the band-a of HA excitation spectra was splitted. It was suggested from all of the results that HA could significantly perturb the lipid bilayer of erythrocyte membrane, there were interactions existing between the Hypocrellin A and the membrane. The HA was mainly located in the middle range of the membrane lipid bilayer when in high concentration (mainly to the 12-16 positions of the long chain fatty acid).  相似文献   

4.
Flow cytometry was used to measure the fluorescence polarization of the lipid probe trimethylammonium-diphenylhexatriene as an indicator of plasma membrane fluidity of Chinese hamster ovary (CHO) cells heated under various conditions. Fluorescence polarization was measured at room temperature about 25 min after heating. When cells were heated for 45 min at temperatures above 42 degrees C, fluorescence polarization decreased progressively, signifying an increase in plasma membrane fluidity. The fluorescence polarization of cells heated at 42 degrees C for up to 55 h was nearly the same as for unheated control populations, despite a reduction in survival. The fluorescence polarization of cells heated at 45 degrees C decreased progressively with heating time, which indicated a progressive increase in membrane fluidity. The fluorescence polarization distributions broadened and skewed toward lower polarization values for long heating times at 45 degrees C. Thermotolerant cells resisted changes in plasma membrane fluidity when challenged with subsequent 45 degrees C exposures. Heated cells were sorted on the basis of their position in the fluorescence polarization distribution and plated to determine survival. The survival of cells which were subjected to various heat treatments and then sorted from high or low tails of the fluorescence polarization histograms was not significantly different. These results show that hyperthermia causes persistent changes in the membrane fluidity of CHO cells but that membrane fluidity is not directly correlated with cell survival.  相似文献   

5.
The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells.  相似文献   

6.
The lipid fluidity in heart sarcoplasmic reticulum membranes prepared from adult (12 mo.) and old (24 mo.) rats has been measured by the fluorescence probe (DPPH) and spin probe (5NS) methods at 22 and 37 degrees C. The lipid fluidity in the old rat membranes is higher than that in the adult rat ones. It has been suggested that this difference is caused by age lowering in reliability of membrane fluidity stabilization systems.  相似文献   

7.
Lipid fluidity in native and denatured sarcoplasmic reticulum membranes and extracted lipids was monitored between -30 and 30 degrees C using trans-parinaric acid as a fluorescent probe. In addition to a large increase in fluidity between -30 and 0 degree C in each system, a phase change centered near 10 degrees C was observed in the extracted lipids but not in either the native or denatured membranes. A significant change in fluorescence intensity near 15 degrees C was observed in native sarcoplasmic reticulum membranes, however, when trans-parinaric acid was excited by energy transfer from tryptophan residues of the membrane protein. When Ca2+-ATPase was subjected to proteolytic cleavage by trypsin as a function of temperature, a change in susceptibility was detected at about 15-20 degrees C in the native membranes but not in a solubilized preparation. It is proposed that one or more structural changes in the microenvironment of Ca2+-ATPase in the native membrane occur between 15 and 20 degrees C which may be related to the change in apparent activation energy which is observed for this enzyme.  相似文献   

8.
本文以荧光探针为手段,以人红细胞膜为材料,测量了膜偏振度的改变,荧光探针能量转移,荧光峰的蓝移和甲素激发峰的分裂。结果表明在有竹红菌甲素存在时,红细胞膜偏振度增加,探针荧光强度减小,荧光峰蓝移。甲素浓度增加时,上述现象更加明显,即它们之间有正的相关关系。同时,甲素激发光谱的a带发生分裂。据此,我们认为甲素对红细胞膜内脂双层产生明显微扰,甲素与红细胞膜间存在着相互作用。在甲素浓度较大时,它主要是渗入到红细胞膜脂双层的深层部位(膜脂肪酸链的12—16位)。  相似文献   

9.
Mammalian cell metabolism is responding to changes in temperature. Body temperature is regulated around 37 degrees C, but temperatures of exposed skin areas may vary between 20 degrees C and 40 degrees C for extended periods of time without apparent disturbance of adequate cellular functions. Cellular membrane functions are depending from temperatures but also from their lipid environment, which is a major component of membrane fluidity. Temperature-induced changes of membrane fluidity may be counterbalanced by adaptive modification of membrane lipids. Temperature-dependent changes of whole cell- and of purified membrane lipids and possible homeoviscous adaptation of membrane fluidity have been studied in human skin fibroblasts cultured at 30 degrees C, 37 degrees C, and 40 degrees C for ten days. Membrane anisotropy was measured by polarized fluorescence spectroscopy using TMA-DPH for superficial and DPH for deeper membrane layers. Human fibroblasts were able to adapt themselves to hypothermic temperatures (30 degrees C) by modifying the fluidity of the deeper apolar regions of the plasma membranes as reported by changes of fluorescence anisotropy due to appropriate changes of their plasma membrane lipid composition. This could not be shown for the whole cells. At 40 degrees C growth temperature, adaptive changes of the membrane lipid composition, except for some changes in fatty acid compositions, were not seen. Independent from the changes of the membrane lipid composition, the fluorescence anisotropy of the more superficial membrane layers (TMA-DPH) increased in cells growing at 30 degrees C and decreased in cells growing at 40 degrees C.  相似文献   

10.
Calcium ion decreases the motional freedom of lipid molecules in isolated rat hepatocyte plasma membranes and in sonicated dispersions (liposomes) of the membrane lipid. The decrease in lipid fluidity was monitored by estimation of the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. At least two processes are involved in the mode of action of the cation. The first is direct, i.e., observed on addition of calcium to the liposomes, relatively rapid, with a half-time of 10-15 at 37 degrees C, proportional to the calcium concentration in the range 0-4 mM, and readily reversed on addition of excess EDTA. The second mechanism is indirected and requires the presence of the membrane proteins. It occurs relatively slowly, with a half-time of 75 min at 37 degrees C, tends to plateau with a calcium half-saturation concentration of approximately 1 mM, is of greater magnitude than the direct effect, and cannot be reversed on chelation of calcium by EDTA. Moreover, the indirect effect is specific for Ca2+ as compared to other divalent cations and it results in changes in the lipid composition. Stimulation of phospholipase A activity is likely but does not account for the change in fluidity. The direct action of calcium is ascribed to binding to the lipid bilayer, whereas the indirect action probably results from modulation of membrane-bound enzymes which can alter the lipid composition. The effects of calcium on the membrane lipid fluidity may underly certain of its regulatory actions on membrane functions.  相似文献   

11.
A group of initial processes in platelet activation, consisting of a platelet shape change, an intracellular calcium mobilization, a calcium efflux, and a membrane fluidity (mobility) change, has been examined in rabbit platelets by a multidimensional stopped-flow method with light scattering, light transmission, and fluorescence measurements. It was found that a 90 degrees light scattering change and internal calcium release (monitored in terms of chlortetracycline fluorescence) take place after a short lag (5 s at 25 degrees C and 2 s at 37 degrees C) following activation by thrombin. The duration of the lag was the same in both cases. During the initial lag period, a rapid increase in platelet membrane fluidity (mobility) was observed by the use of pyrene excimer fluorescence. These results suggest that the intracellular calcium mobilization and the shape change are triggered by the same rate-determining step, and increase in membrane mobility may play some role in the initial stage of platelet activation before intracellular calcium mobilization occurs.  相似文献   

12.
The effect of detergents on enzymic and barrier properties of membrane structures is studied in the plasma membrane fraction, postsynaptic membranes of smooth muscle cells and sterine bilipid membranes. The formation of hydrophylic pores in the membrane, as well as changes in the phase state of the lipid matrix and fluidity of lipid microenvironment of membrane enzymes are supposed.  相似文献   

13.
Upon stimulation with either concanavalin A or the tuberculin antigen, purified protein derivative, human peripheral blood lymphocytes, purified on Ficoll-Hypaque, did not exhibit a concomitant lipid fluidity alteration as measured by fluorescence polarization (P) of the lipid probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). This result was independent of the incubation period, ranging from 10 min to 72 h. However, a general reduction in polarization value, from P = 0.287 (maintained for up to 2 h of incubation) to P = 0.225 after 20 h was observed for both experimental and control samples. Moreover, fluorescence polarization studies of the nonpenetrating modified DPH cationic lipid probe, 1-[4′-trimethylaminophenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH), also failed to show any change in lipid fluidity subsequent to a 1–3 h incubation of lymphocytes with concanavalin A. Cell electrophoretic mobility, however, was altered (mean cell mobility increased by 10–15%) in a fast response to stimulation and was observed within several hours of in vitro application of concanavalin A and purified protein derivative. This initial response disappeared with further incubation at 37°C (>3 h) and was followed by a decline of cellular mobility of the concanavalin A-exposed cells after 48 and 72 h of incubation. The unstimulated control cells did not change in mobility as a function of incubation time. The slow decline in mean cell mobility of the experimental cells is believed to be associated with blastogenesis. It is concluded that neither blastogenic transformation nor short term membrane alterations associated with human lymphocyte activation lead to lipid fluidity changes as measured in steady state by the fluorescence polarization of both DPH and TMA-DPH.  相似文献   

14.
Basolateral membranes from rabbit proximal colon were prepared from isolated colonocytes throughout postnatal maturation, using a modification of published techniques. In suckling (14-20 day) and post-weaning/mature (35-49 day) animals, membranes were purified approx. 10-fold, based upon the enrichment of ouabain-sensitive, sodium-potassium dependent adenosine triphosphatase activity. Membrane lipid analyses demonstrated age-dependent increases in total cholesterol and the cholesterol/phospholipid molar ratio, as well as decreases in phosphatidylethanolamine content and the fatty acid unsaturation index. Fluidity of basolateral membranes and membrane liposomes, determined from fluorescence anisotropy measurements using the lipid probes 1,6-diphenyl-1,3,5-hexatriene and DL-12-(9-anthroyl)stearic acid, demonstrated significant, ontogenic decreases in fluidity; and, additional studies showed that fluidity changes occurred early in the weaning period (by day 24 postnatally). Arrhenius plots of liposome anisotropies suggested a bilayer lipid thermotropic transition temperature of 22 degrees C in sucklings 26 degrees C in mature rabbits. These findings demonstrate that ontogeny of colonic basolateral membranes is associated with significant modulations in lipid composition and fluidity.  相似文献   

15.
Prilocaine can increase the fluidity of rat liver plasma membranes, as indicated by a fatty acid spin-probe. This led to the activation of the membrane-bound fluoride-stimulated adenylate cyclase activity, but not the Lubrol-solubilized activity, suggesting that increased lipid fluidity can activate the enzyme. With increasing prilocaine concentrations above 10 mM, the membrane-bound fluoride-stimulated activity was progressively inhibited, even though bilayer fluidity continued to increase and the activity of the solubilized enzyme remained unaffected. Glucagon-stimulated adenylate cyclase was progressively inhibited by increasing prilocaine concentrations. Prilocaine (10 mM) had no effect on the lipid phase separation occurring at 28 degrees C and attributed to those lipids in the external half of the bilayer, as indicated by Arrhenius plots of both glucagon-stimulated adenylate cyclase activity and the order parameter of a fatty acid spin-probe. However, 10 mM-prilocaine induced a lipid phase separation at around 11 degrees C that was attributed to the lipids of the internal (cytosol-facing) half of the bilayer. It is suggested that prilocaine (10 mM) can selectively perturb the inner half of the bilayer of rat liver plasma membranes owing to its preferential interaction with the acidic phospholipids residing there.  相似文献   

16.
Calcium ion decreases the lipid fluidity of isolated rat hepatocyte plasma membranes by modulating the activity of membrane enzymes which alter the lipid composition. To explore the mechanism of the effect of the cation, eight fluorophores were used to assess lipid fluidity via estimations of either steady-state fluorescence polarization or excimer fluorescence intensity. The results demonstrate that the reduction in fluidity occurs in the hydrophobic interior of the bilayer and that both the dynamic and static (lipid order) components of fluidity are affected by treatment with calcium. Analysis of the membrane lipids demonstrates that calcium treatment decreases the arachidonic acid content of the polar lipid fraction and, thereby, reduces the double-bond index of the fatty acids. This change in composition, which is expected to reduce the lipid fluidity, may result from activation by calcium of the endogenous hepatocyte plasma membrane phospholipase A2.  相似文献   

17.
The physical state of mitochondrial membranes has been investigated by means of stearic acid spin labels and of a maleimide spin label covalently bound to protein sulfhydryl groups. Stearic acid spin labels 5-NS and 16-NS show that n-butanol enhances the lipid fluidity of mitochondrial membranes in the whole temperature range between 4 and 37 degrees C; the effects in the hydrophobic membrane core, probed by 16-NS, are already apparent at 10 mM butanol. In liposomes formed of mitochondrial phospholipids, a fluidizing effect appears only at much higher concentration. Such results are compatible with the idea that butanol destabilizes lipid-protein interactions. On the other hand, the ratio between weakly and strongly immobilized SH groups probed by maleimide spin label is only slightly affected in the temperature range of 4-37 degrees C by addition of high concentrations of n-butanol, indicating that the environments probed are stable to agents inducing fluidity changes in the lipids. There are, however, indications that the environment probed by maleimide is affected by lipids, since the spin label, when bound to lipid-depleted mitochondria, becomes more immobilized, reconstitution of such lipid-depleted membranes with phospholipids restores the original spectra.  相似文献   

18.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

19.
In order to monitor the intermediates involved in nascent peptidoglycan (PG) assembly in Gaffkya homari, a pulse/chase assay utilizing UDP-MurNAc-Ala-DGlu-Lys(N epsilon-Dns)-DAla-DAla [Dns (dansyl) = 5-(dimethylamino)naphthalene-1-sulfonyl] was devised. The perturbation introduced by the dansyl group provided a means for separating the synthesis of nascent PG into discrete stages. Together with paramagnetic quenching of the fluorophore by n-doxylstearic acids (n = 5, 7, 12, 16; doxyl = N-oxy-4',4'-dimethyloxazolidine), this assay allows one to observe the synthesis of undecaprenyl diphosphate-MurNAc-[N epsilon-Dns)pentapeptide)-GlcNAc and its utilization for the formation of dansyl-labeled PG by fluorescence emission and by change in specific positional quenching. The utilization of the dansylated lipid disaccharide-pentapeptide occurs without a lag, whereas the formation of the chromatographically immobile dansylated PG occurs with a lag of 4-6 min. Membrane-associated undecaprenyl diphosphate-MurNAc-(N epsilon-Dns)-pentapeptide was quenched primarily by 7-doxylstearate. In contrast, the fluorophore of the undecaprenyl diphosphate-MurNAc-[N epsilon-Dns)pentapeptide)-GlcNAc was quenched primarily by 5-doxyl- and 16-doxylstearates. In the chase phase of the assay, quenching by 16-doxylstearate decreased at a faster rate than that by 5-doxylstearate during the formation of dansyl-labeled PG.  相似文献   

20.
The lipid packing of thylakoid membranes is an important factor for photosynthetic performance. However, surprisingly little is known about it and it is generally accepted that the bulk thylakoid lipids adopt the liquid-crystalline phase above -30 degrees C and that a phase transition occurs only above 45 degrees C. In order to obtain information on the nature of the lipid microenvironment and its temperature dependence, steady-state and time-resolved fluorescence measurements were performed on the fluorescence probe Merocyanine 540 (MC540) incorporated in isolated spinach thylakoids and in model lipid systems (dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) adopting different phases. It is demonstrated that the degree and way of incorporation differs for most lipid phases--upon selective excitation at 570 nm, the amplitude of the fluorescence component that corresponds to membrane-incorporated MC540 is about 20% in gel-, 60% in rippled gel-, and 90% in liquid-crystalline and inverted hexagonal phase, respectively. For thylakoids, the data reveal hindered incorporation of MC540 (amplitude about 30% at 7 degrees C) and marked spectral heterogeneity at all temperatures. The incorporation of MC540 in thylakoids strongly depends on temperature. Remarkably, above 25 degrees C MC540 becomes almost completely extruded from the lipid environment, indicating major rearrangements in the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号