首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial function requires maintaining metabolite fluxes across the mitochondrial outer membrane, which is mediated primarily by the voltage dependent anion channel (VDAC). We applied fluorescence correlation spectroscopy (FCS) to study regulation of the VDAC functional state by monitoring distribution of fluorescently labeled ATP (BODIPY-FL-ATP) in isolated intact rat liver and heart mitochondria. Addition of mitochondria to BODIPY-FL-ATP solution resulted in accumulation of the fluorescent probe in these organelles. The addition of hexokinase II (HKII) isolated from rat heart led to a decrease in the BODIPY-FL-ATP accumulation, while a 15-residue peptide corresponding to the N-terminal domain of hexokinase did not produce this effect. Therefore, the hexokinase-induced inhibition of the ATP flow mediated by VDAC was revealed in isolated mitochondria.  相似文献   

2.
The channel-forming protein called VDAC forms the major pathway in the mitochondrial outer membrane and controls metabolite flux across that membrane. The different VDAC isoforms of a species may play different roles in the regulation of mitochondrial functions. The mouse has three VDAC isoforms (VDAC1, VDAC2 and VDAC3). These proteins and different versions of VDAC3 were expressed in yeast cells (S. cerevisiae) missing the major yeast VDAC gene and studied using different approaches. When reconstituted into liposomes, each isoform induced a permeability in the liposomes with a similar molecular weight cutoff (between 3,400 and 6,800 daltons based on permeability to polyethylene glycol). In contrast, electrophysiological studies on purified proteins showed very different channel properties. VDAC1 is the prototypic version whose properties are highly conserved among other species. VDAC2 also has normal gating activity but may exist in 2 forms, one with a lower conductance and selectivity. VDAC3 can also form channels in planar phospholipid membranes. It does not insert readily into membranes and generally does not gate well even at high membrane potentials (up to 80 mV). Isolated mitochondria exhibit large differences in their outer membrane permeability to NADH depending on which of the mouse VDAC proteins was expressed. These differences in permeability could not simply be attributed to different amounts of each protein present in the isolated mitochondria. The roles of these different VDAC proteins are discussed. Received: 19 June 1998/Revised: 1 April 1999  相似文献   

3.
The supply of substrates to the respiratory chain as well as of other metabolites (e.g. ATP) into inner compartments of mitochondria is crucial to preprotein import into these organelles. Transport of the compounds across the outer mitochondrial membrane is enabled by mitochondrial porin, also known as the voltage-dependent anion-selective channel (VDAC). Our previous studies led to the conclusion that the transport of metabolites through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria missing VDAC (now termed YVDAC1) is considerably restricted. Therefore we expected that depletion of YVDAC1 should also hamper protein import into the mutant mitochondria. We report here that YVDAC1-depleted mitochondria are able to import a fusion protein termed pSu9-DHFR in the amount comparable to that of wild type mitochondria, although over a considerably longer time. The rate of import of the fusion protein into YVDAC1-depleted mitochondria is dis- tinctly lower than into wild type mitochondria probably due to restricted ATP access to the intermembrane space and is additionally influenced by the way the supporting respiratory substrates are transported through the outer membrane. In the presence of ethanol, diffusing freely through lipid membranes, YVDAC1-depleted mitochondria are able to import the fusion protein at a higher rate than in the presence of external NADH which is, like ATP, transported through the outer membrane by facilitated diffusion. It has been shown that transport of external NADH across the outer membrane of YVDAC1-depleted mitochondria is supported by the protein import machinery, i.e. the TOM complex (Kmita & Budzińska, 2000, Biochim. Biophys. Acta 1509, 86-94.). Since the TOM complex might also contribute to the permeability of the membrane to ATP, it seems possible that external NADH and ATP as well as the imported preprotein could compete with one another for the passage through the outer membrane in YVDAC1-depleted mitochondria.  相似文献   

4.
Insertion of newly synthesized proteins into or across the mitochondrial outer membrane is initiated by import receptors at the surface of the organelle. Typically, this interaction directs the precursor protein into a preprotein translocation pore, comprised of Tom40. Here, we show that a prominent beta-barrel channel protein spanning the outer membrane, human voltage- dependent anion-selective channel (VDAC), bypasses the requirement for the Tom40 translocation pore during biogenesis. Insertion of VDAC into the outer membrane is unaffected by plugging the translocation pore with a partially translocated matrix preprotein, and mitochondria containing a temperature-sensitive mutant of Tom40 insert VDAC at the nonpermissive temperature. Synthetic liposomes harboring the cytosolic domain of the human import receptor Tom20 efficiently insert newly synthesized VDAC, resulting in transbilayer transport of ATP. Therefore, Tom20 transforms newly synthesized cytosolic VDAC into a transmembrane channel that is fully integrated into the lipid bilayer.  相似文献   

5.
The diffusion of metabolites across the outer mitochondrial membrane is essential for coupled cellular respiration. The outer membrane of mitochondria isolated from growth factor-deprived cells is impaired in its ability to exchange metabolic anions. When added to mitochondria, recombinant Bcl-x(L) restores metabolite exchange across the outer membrane without inducing the loss of cytochrome c from the intermembrane space. Restoration of outer membrane permeability to anionic metabolites does not occur directly through Bcl-x(L) ion channels. Instead, recombinant Bcl-x(L) maintains the outer mitochondrial membrane channel, VDAC, in an open configuration. Consistent with these findings, when ADP-induced oxidative phosphorylation is limited by exogenous beta-NADH, recombinant Bcl-x(L) can sustain outer mitochondrial membrane permeability to ADP. beta-NADH limits respiration by promoting the closed configuration of VDAC. Together these results demonstrate that following an apoptotic signal, Bcl-x(L) can maintain metabolite exchange across the outer mitochondrial membrane by inhibiting VDAC closure.  相似文献   

6.
Mitochondria of the yeast Saccharomyces cerevisiae constitute a perfect model to study the outer membrane channel modulation as besides the TOM complex channel they contain only a single isoform of the VDAC channel and it is possible to obtain viable mutants devoid of the channel. Here, we report that the fraction of the intermembrane space isolated from wild type and the VDAC channel-depleted yeast mitochondria, except of the well-known VDAC channel modulator activity, displays also the TOM complex channel modulating activity as measured in the reconstituted system and with intact mitochondria. The important factor influencing the action of both modulating activities is the energized state of mitochondria. Moreover, the presence of the VDAC channel itself seems to be crucial to properties of the intermembrane space protein (s) able to modulate the outer membrane channels because in the case of intact mitochondria quantitative differences are observed between modulating capabilities of the fractions isolated from wild type and mutant mitochondria.  相似文献   

7.
Thus far, only three channel-forming activities have been identified in the outer membrane of the yeast Saccharomyces cerevisiae mitochondria. Two of them, namely the TOM complex channel (translocase of the outer membrane) and the PSC (peptide-sensitive channel) participate in protein translocation and are probably identical, whereas a channel-forming protein called VDAC (voltage-dependent anion channel) serves as the major pathway for metabolites. The VDAC is present in two isoforms (VDAC1 and VDAC2) of which only VDAC1 has been shown to display channel-forming activity. Moreover, the permeability of VDAC1 has been reported to be limited in uncoupled mitochondria of S. cerevisiae. The presented data indicate that in S. cerevisiae-uncoupled mitochondria, external NADH, applied at higher concentrations (above 50 nmoles per 0.1 mg of mitochondrial protein), may use the TOM complex channel, besides VDAC1, to cross the outer membrane. Thus, the permeability of VDAC1 could be a limiting step in transport of external NADH across the outer membrane and might be supplemented by the TOM complex channel.  相似文献   

8.
VDAC closure increases calcium ion flux   总被引:4,自引:0,他引:4  
VDAC is the major permeability pathway in the mitochondrial outer membrane and can control the flow of metabolites and ions. Therefore Ca(2+) flux across the outer membrane occurs mainly through VDAC. Since both Ca(2+) fluxes and VDAC are involved in apoptosis, we examined whether Ca(2+) is required for channel formation by VDAC isolated from rat liver. The voltage gating of VDAC does not require Ca(2+) and it functions normally with or without Ca(2+). Additionally, VDAC generally shows a higher permeability to Ca(2+) in the closed states (states with lower permeability to metabolites) than that in the open state. Thus VDAC closure, which induces apoptosis, also favors Ca(2+) flux into mitochondria, which can also lead to permeability transition and cell death. These results are consistent with the view that VDAC closure is a pro-apoptotic signal.  相似文献   

9.
Conserved roles of Sam50 and metaxins in VDAC biogenesis   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-dependent anion-selective channel (VDAC) is a beta-barrel protein in the outer mitochondrial membrane that is necessary for metabolite exchange with the cytosol and is proposed to be involved in certain forms of apoptosis. We studied the biogenesis of VDAC in human mitochondria by depleting the components of the mitochondrial import machinery by using RNA interference. Here, we show the importance of the translocase of the outer mitochondrial membrane (TOM) complex in the import of the VDAC precursor. The deletion of Sam50, the central component of the sorting and assembly machinery (SAM), led to both a strong defect in the assembly of VDAC and a reduction in the steady-state level of VDAC. Metaxin 2-depleted mitochondria had reduced levels of metaxin 1 and were deficient in import and assembly of VDAC and Tom40, but not of three matrix-targeted precursors. We also observed a reduction in the levels of metaxin 1 and metaxin 2 in Sam50-depleted mitochondria, implying a connection between these three proteins, although Sam50 and metaxins seemed to be in different complexes. We conclude that the pathway of VDAC biogenesis in human mitochondria involves the TOM complex, Sam50 and metaxins, and that it is evolutionarily conserved.  相似文献   

10.
M Ohba  G Schatz 《The EMBO journal》1987,6(7):2117-2122
Treatment of isolated yeast mitochondria with high levels (1 mg/ml) of trypsin severely inhibits protein import but does not destroy the integrity of the outer membrane or abolish mitochondrial energy coupling. If the outer membrane of these trypsin-inactivated mitochondria is disrupted by osmotic shock, the resulting mitoplasts are again able to import proteins. Protein import into mitoplasts, like that into intact mitochondria, is energy-dependent; however, whereas import into mitochondria is inhibited by antibody against 45-kd proteins of the outer membrane [Ohba and Schatz, EMBO J., 6, 2109-2115 (1987)], import into mitoplasts not affected by this antibody. Protein import into mitoplasts appears to bypass one or more steps normally occurring at the mitochondrial surface.  相似文献   

11.
Two different functions have been proposed for the phosphate carrier protein/p32 of Saccharomyces cerevisiae mitochondria: transport of phosphate and requirement for import of precursor proteins into mitochondria. We characterized a yeast mutant lacking the gene for the phosphate carrier/p32 and found both a block in the import of phosphate and a strong reduction in the import of preproteins transported to the mitochondrial inner membrane and matrix. Binding of preproteins to the surface of mutant mitochondria and import of outer membrane proteins were not inhibited, indicating that the inhibition of protein import occurred after the recognition step at the outer membrane. The membrane potential across the inner membrane of the mutant mitochondria was strongly reduced. Restoration of the membrane potential restored preprotein import but did not affect the block of phosphate transport of the mutant mitochondria. We conclude that the inhibition of protein import into mitochondria lacking the phosphate carrier/p32 is indirectly caused by a reduction of the mitochondrial membrane potential (delta(gamma)), and we propose a model that the reduction of delta(psi) is due to the defective phosphate import, suggesting that phosphate transport is the primary function of the phosphate carrier/p32.  相似文献   

12.
Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an essential component of the protein insertion machinery, and we show that members of the Omp85 protein family are also found in eukaryotes ranging from plants to humans. In eukaryotes, Omp85 is present in the mitochondrial outer membrane. The gene encoding Omp85 is essential for cell viability in yeast, and conditional omp85 mutants have defects that arise from compromised insertion of integral proteins like voltage-dependent anion channel (VDAC) and components of the translocase in the outer membrane of mitochondria (TOM) complex into the mitochondrial outer membrane.  相似文献   

13.
Mitochondrial gene products are essential for the viability of eukaryote obligate aerobes. Consequently, mutations of the mitochondrial genome cause severe diseases in man and generate traits widely used in plant breeding. Pathogenic mutations can often be identified but direct genetic rescue remains impossible because mitochondrial transformation is still to be achieved in higher eukaryotes. Along this line, it has been shown that isolated plant and mammalian mitochondria are naturally competent for importing linear DNA. However, it has proven difficult to understand how such large polyanions cross the mitochondrial membranes. The genetic tractability of Saccharomyces cerevisae could be a powerful tool to unravel this molecular mechanism. Here we show that isolated S. cerevisiae mitochondria can import linear DNA in a process sharing similar characteristics to plant and mammalian mitochondria. Based on biochemical data, translocation through the outer membrane is believed to be mediated by voltage-dependent anion channel (VDAC) isoforms in higher eukaryotes. Both confirming this hypothesis and validating the yeast model, we illustrate that mitochondria from S. cerevisiae strains deleted for the VDAC-1 or VDAC-2 gene are severely compromised in DNA import. The prospect is now open to screen further mutant yeast strains to identify the elusive inner membrane DNA transporter.  相似文献   

14.
VDAC is the major permeability pathway in the mitochondrial outer membrane and can control the flow of metabolites and ions. Therefore Ca2+ flux across the outer membrane occurs mainly through VDAC. Since both Ca2+ fluxes and VDAC are involved in apoptosis, we examined whether Ca2+ is required for channel formation by VDAC isolated from rat liver. The voltage gating of VDAC does not require Ca2+ and it functions normally with or without Ca2+. Additionally, VDAC generally shows a higher permeability to Ca2+ in the closed states (states with lower permeability to metabolites) than that in the open state. Thus VDAC closure, which induces apoptosis, also favors Ca2+ flux into mitochondria, which can also lead to permeability transition and cell death. These results are consistent with the view that VDAC closure is a pro-apoptotic signal.  相似文献   

15.
16.
MOM22 is a component of the protein import complex of the mitochondrial outer membrane of Neurospora crassa. Using the newly developed procedure of 'sheltered disruption', we created a heterokaryotic strain harboring two nuclei, one with a null allele of the mom-22 gene and the other with a wild-type allele. Homokaryons bearing the mom-22 disruption could not be isolated, suggesting that mom-22 is an essential gene. The mutant nucleus can be forced to predominate in the heterokaryon through the use of specific nutritional and inhibitor resistance markers. Cultivation of the heterokaryon under conditions favoring the mutant nucleus resulted in selective depletion of MOM22. MOM22-depleted cells did not grow and contained mitochondria with an altered morphology and protein composition. Protein import into isolated, MOM22-depleted mitochondria was abolished for most precursor proteins destined for all subcompartments. In contrast, precursors of MOM19, MOM22 and MOM72 became inserted normally into the outer membrane, defining a novel MOM22-independent import pathway which remained intact in mutant mitochondria. Furthermore, the specific binding of the ADP/ATP carrier to the outer membrane was unaffected, but subsequent transport across the outer membrane did not occur. Our data show that MOM22 is an essential component of Neurospora cells specifically required for the biogenesis of mitochondria.  相似文献   

17.
The import of metals, iron in particular, into mitochondria is poorly understood. Iron in mitochondria is required for the biosynthesis of heme and various iron-sulfur proteins. We have developed an in vitro assay to follow the uptake of iron into isolated yeast mitochondria. By measuring the incorporation of iron into porphyrin by ferrochelatase in the matrix, we were able to define the mechanism of iron import. Iron uptake is driven energetically by a membrane potential across the inner membrane but does not require ATP. Only reduced iron is functional in generating heme. Iron cannot be preloaded in the mitochondrial matrix but rather has to be transported across the inner membrane simultaneously with the synthesis of heme, suggesting that ferrochelatase receives iron directly from the inner membrane. Transport of iron is inhibited by manganese but not by zinc, nickel, and copper ions, explaining why in vivo these ions are not incorporated into porphyrin. The inner membrane proteins Mmt1p and Mmt2p proposed to be involved in mitochondrial iron movement are not required for the supply of ferrochelatase with iron. Iron transport can be reconstituted efficiently in a membrane potential-dependent fashion in proteoliposomes that were formed from a detergent extract of mitochondria. Our biochemical analysis of iron import into yeast mitochondria provides the basis for the identification of components involved in transport.  相似文献   

18.
The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.  相似文献   

19.
The role of lipids in VDAC oligomerization   总被引:1,自引:0,他引:1  
Evidence has accumulated that the voltage-dependent anion channel (VDAC), located on the outer membrane of mitochondria, plays a central role in apoptosis. The involvement of VDAC oligomerization in apoptosis has been suggested in various studies. However, it still remains unknown how exactly VDAC supramolecular assembly can be regulated in the membrane. This study addresses the role of lipids in this process. We investigate the effect of cardiolipin (CL) and phosphatidylglycerol (PG), anionic lipids important for mitochondria metabolism and apoptosis, on VDAC oligomerization. By applying fluorescence cross-correlation spectroscopy to VDAC reconstituted into giant unilamellar vesicles, we demonstrate that PG significantly enhances VDAC oligomerization in the membrane, whereas cardiolipin disrupts VDAC supramolecular assemblies. During apoptosis, the level of PG in mitochondria increases, whereas the CL level decreases. We suggest that the specific lipid composition of the outer mitochondrial membrane might be of crucial relevance and, thus, a potential cue for regulating the oligomeric state of VDAC.  相似文献   

20.
Voltage dependent anion channel (VDAC) was identified in 1976 and since that time has been extensively studied. It is well known that VDAC transports metabolites across the outer mitochondrial membrane. The simple transport function is indispensable for proper mitochondria functions and, consequently for cell activity, and makes VDAC crucial for a range of cellular processes including ATP rationing, Ca2+ homeostasis and apoptosis execution. Here, we review recent data obtained for Saccharomyces cerevisiae cells used as a model system concerning the putative role of VDAC in communication between mitochondria and the nucleus. The S. cerevisiae VDAC isoform known as VDAC1 (termed here YVDAC) mediates the cytosol reduction/oxidation (redox) state that contributes to regulation of expression and activity of cellular proteins including proteins that participate in protein import into mitochondria and antioxidant enzymes. Simultaneously, copper-and-zinc-containing superoxide dismutase (CuZnSOD) plays an important role in controlling YVDAC activity and expression levels. Thus, it is proposed that VDAC constitutes an important component of a regulatory mechanism based on the cytosol redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号