首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variation is considered critical for allowing natural populations to adapt to their changing environment, and yet the effects of human disturbance on genetic variation in the wild are poorly understood. Different types of human disturbances may genetically impact natural populations in a predictable manner and so the aim of this study was to provide an overview of these changes using a quantitative literature review approach. I examined both allozyme and microsatellite estimates of genetic variation from peer-reviewed journals, using the mean number of alleles per locus and expected heterozygosity as standardized metrics. Populations within each study were categorized according to the type of human disturbance experienced (“hunting/harvest”, “habitat fragmentation”, or “pollution”), and taxon-specific, as well as time- and context-dependent disturbance effects were considered. I found that human disturbances are associated with weak, but consistent changes in neutral genetic variation within natural populations. The direction of change was dependent on the type of human disturbance experienced, with some forms of anthropogenic challenges consistently decreasing genetic variation from background patterns (e.g., habitat fragmentation), whereas others had no effect (e.g., hunting/harvest) or even slightly increased genetic variation (e.g., pollution). These same measures appeared sensitive to both the time of origin and duration of the disturbance as well. This suggests that the presence or absence, strength, type, as well as the spatial and temporal scale of human disturbance experienced may warrant careful consideration when conservation management plans are formulated for natural populations, with particular attention paid to the effects of habitat fragmentation.  相似文献   

2.
Patterns of quantitative genetic variation in multiple dimensions   总被引:1,自引:0,他引:1  
Kirkpatrick M 《Genetica》2009,136(2):271-284
A fundamental question for both evolutionary biologists and breeders is the extent to which genetic correlations limit the ability of populations to respond to selection. Here I view this topic from three perspectives. First, I propose several nondimensional statistics to quantify the genetic variation present in a suite of traits and to describe the extent to which correlations limit their selection response. A review of five data sets suggests that the total variation differs substantially between populations. In all cases analyzed, however, the “effective number of dimensions” is less than two: more than half of the total genetic variation is explained by a single combination of traits. Second, I consider how patterns of variation affect the average evolutionary response to selection in a random direction. When genetic variation lies in a small number of dimensions but there are a large number of traits under selection, then the average selection response will be reduced substantially from its potential maximum. Third, I discuss how a low genetic correlation between male fitness and female fitness limits the ability of populations to adapt. Data from two recent studies of natural populations suggest this correlation can diminish or even erase any genetic benefit to mate choice. Together these results suggest that adaptation (in natural populations) and genetic improvement (in domesticated populations) may often be as much constrained by patterns of genetic correlation as by the overall amount of genetic variation.  相似文献   

3.
The initial contact of European populations with indigenous populations of the Americas produced diverse admixture processes across North, Central, and South America. Recent studies have examined the genetic structure of indigenous populations of Latin America and the Caribbean and their admixed descendants, reporting on the genomic impact of the history of admixture with colonizing populations of European and African ancestry. However, relatively little genomic research has been conducted on admixture in indigenous North American populations. In this study, we analyze genomic data at 475,109 single-nucleotide polymorphisms sampled in indigenous peoples of the Pacific Northwest in British Columbia and Southeast Alaska, populations with a well-documented history of contact with European and Asian traders, fishermen, and contract laborers. We find that the indigenous populations of the Pacific Northwest have higher gene diversity than Latin American indigenous populations. Among the Pacific Northwest populations, interior groups provide more evidence for East Asian admixture, whereas coastal groups have higher levels of European admixture. In contrast with many Latin American indigenous populations, the variance of admixture is high in each of the Pacific Northwest indigenous populations, as expected for recent and ongoing admixture processes. The results reveal some similarities but notable differences between admixture patterns in the Pacific Northwest and those in Latin America, contributing to a more detailed understanding of the genomic consequences of European colonization events throughout the Americas.  相似文献   

4.

Background  

The analysis of genetic variation in populations of infectious agents may help us understand their epidemiology and evolution. Here we study a model for assessing the levels and patterns of genetic diversity in populations of infectious agents. The population is structured into many small subpopulations, which correspond to their hosts, that are connected according to a specific type of contact network. We considered different types of networks, including fully connected networks and scale free networks, which have been considered as a model that captures some properties of real contact networks. Infectious agents transmit between hosts, through migration, where they grow and mutate until elimination by the host immune system.  相似文献   

5.
The mtDNA variation of 411 individuals from 10 aboriginal Siberian populations was analyzed in an effort to delineate the relationships between Siberian and Native American populations. All mtDNAs were characterized by PCR amplification and restriction analysis, and a subset of them was characterized by control region sequencing. The resulting data were then compiled with previous mtDNA data from Native Americans and Asians and were used for phylogenetic analyses and sequence divergence estimations. Aboriginal Siberian populations exhibited mtDNAs from three (A, C, and D) of the four haplogroups observed in Native Americans. However, none of the Siberian populations showed mtDNAs from the fourth haplogroup, group B. The presence of group B deletion haplotypes in East Asian and Native American populations but their absence in Siberians raises the possibility that haplogroup B could represent a migratory event distinct from the one(s) which brought group A, C, and D mtDNAs to the Americas. Our findings support the hypothesis that the first humans to move from Siberia to the Americas carried with them a limited number of founding mtDNAs and that the initial migration occurred between 17,000-34,000 years before present.  相似文献   

6.
Like many wide‐ranging mammals, American bison (Bison bison) have experienced significant range contraction over the past two centuries and are maintained in artificially isolated populations. A basic understanding of the distribution of genetic variation among populations is necessary to facilitate long‐term germplasm preservation and species conservation. The 11 herds maintained within the US federal system are a critically important source of germplasm for bison conservation, as they include many of the oldest herds in the USA and have served as a primary resource for the establishment of private and public herds worldwide. In this study, we used a panel of 51 nuclear markers to investigate patterns of neutral genetic variation among these herds. Most of these herds have maintained remarkably high levels of variation despite the severe bottleneck suffered in the late 1800s. However, differences were noted in the patterns of variation and levels of differentiation among herds, which were compared with historical records of establishment, supplementation, herd size, and culling practices. Although some lineages have been replicated across multiple herds within the US federal system, other lineages with high levels of genetic variation exist in isolated herds and should be considered targets for the establishment of satellite herds. From this and other studies, it is clear that the genetic variation represented in the US federal system is unevenly distributed among National Park Service and Fish and Wildlife Service herds, and that these resources must be carefully managed to ensure long‐term species conservation.  相似文献   

7.
Patterns of molecular genetic variation among cat breeds   总被引:1,自引:0,他引:1  
Genetic variation in cat breeds was assessed utilizing a panel of short tandem repeat (STR) loci genotyped in 38 cat breeds and 284 single-nucleotide polymorphisms (SNPs) genotyped in 24 breeds. Population structure in cat breeds generally reflects their recent ancestry and absence of strong breed barriers between some breeds. There is a wide range in the robustness of population definition, from breeds demonstrating high definition to breeds with as little as a third of their genetic variation partitioning into a single population. Utilizing the STRUCTURE algorithm, there was no clear demarcation of the number of population subdivisions; 16 breeds could not be resolved into independent populations, the consequence of outcrossing in established breeds to recently developed breeds with common ancestry. These 16 breeds were divided into 6 populations. Ninety-six percent of cats in a sample set of 1040 were correctly assigned to their classified breed or breed group/population. Average breed STR heterozygosities ranged from moderate (0.53; Havana, Korat) to high (0.85; Norwegian Forest Cat, Manx). Most of the variation in cat breeds was observed within a breed population (83.7%), versus 16.3% of the variation observed between populations. The hierarchical relationships of cat breeds is poorly defined as demonstrated by phylogenetic trees generated from both STR and SNP data, though phylogeographic grouping of breeds derived completely or in part from Southeast Asian ancestors was apparent.  相似文献   

8.
Patterns of genetic variation in rare and widespread plant congeners   总被引:2,自引:0,他引:2  
Rare species are typically considered to maintain low levels of genetic variation, and this view has been supported by several reviews of large numbers of isozyme studies. Although these reviews have provided valuable data on levels of variability in plant species in general, and rare species in particular, these broad overviews involve comparisons that may confound the effects of rarity with a multitude of other factors that affect genetic variability. Additionally, the statistical analyses employed assume the data to be independent, which is not the case for organisms that share a common phylogenetic history. As the role of evolutionary history and historical constraints has become better understood, more researchers have studied widespread congeners when investigating the genetic diversity of rare species in an effort to control for these effects. We summarize the available data from such studies, comparing for rare and widespread congeners (1) the levels of genetic variability at the population and species levels and (2) measures of population substructuring. At the population level, we summarized data for percentage polymorphic loci (%P(pop)), mean number of alleles per locus (A(pop)), and observed heterozygosity (H(o)). Species-level measures used were percentage polymorphic loci (%P(spp)), mean number of alleles per locus (A(spp)), and total genetic diversity (H(T)). Indices of population subdivision (either F(ST) or G(ST)) were also examined. Using Wilcoxon signed rank tests, we found significant, but small, differences between rare and widespread species for all diversity measures except H(T). However, there does not appear to be a difference between rare and widespread congeners in terms of how genetic variation is partitioned within and among populations. Levels of diversity, for all measures examined, between rare and widespread congeners are highly correlated.  相似文献   

9.
Cycas taitungensis Shen, Hill, Tsou & Chen is an endemic species remaining in two remnant populations in southeastern Taiwan. Ecological studies showed that the sex ratio between female and male of the main population is approximately 1.7:1. Leaf production was found to be correlated with tree height before reaching 1 m in length (r = 0.95). The annual reproduction rate of female plants is highly variable, with seed numbering between 80 and 400 in each tree. The site study revealed a significant difference in vegetative growth and age structure between the subpopulations collected in two opposite microhabitats. Genetic studies using isozyme analysis showed low genetic variability (HE = 0.039) and little genetic differentiation between the populations (FST = 0.051). The genetic data are well correlated with the ecological observation that the differences reflect various microhabitat effects within a very local environment and that the impact influenced the extent of the degree of genetic differentiation within local populations. This work presents extensive genetic information forC. taitungensis that give rise to more ecological and genetic insights into the plant for better establishment of in situ and ex situ conservation programs.  相似文献   

10.
11.
Gibbons are small, arboreal, highly endangered apes that are understudied compared with other hominoids. At present, there are four recognized genera and approximately 17 species, all likely to have diverged from each other within the last 5-6 My. Although the gibbon phylogeny has been investigated using various approaches (i.e., vocalization, morphology, mitochondrial DNA, karyotype, etc.), the precise taxonomic relationships are still highly debated. Here, we present the first survey of nuclear sequence variation within and between gibbon species with the goal of estimating basic population genetic parameters. We gathered ~60 kb of sequence data from a panel of 19 gibbons representing nine species and all four genera. We observe high levels of nucleotide diversity within species, indicative of large historical population sizes. In addition, we find low levels of genetic differentiation between species within a genus comparable to what has been estimated for human populations. This is likely due to ongoing or episodic gene flow between species, and we estimate a migration rate between Nomascus leucogenys and N. gabriellae of roughly one migrant every two generations. Together, our findings suggest that gibbons have had a complex demographic history involving hybridization or mixing between diverged populations.  相似文献   

12.
The highly threatened African elephants have recently been subdivided into two species, Loxodonta africana (savannah or bush elephant) and L. cyclotis (forest elephant) based on morphological and molecular studies. A molecular genetic assessment of 16 microsatellite loci across 20 populations (189 individuals) affirms species level genetic differentiation and provides robust genotypic assessment of species affiliation. Savannah elephant populations show modest levels of phylogeographic subdivision based on composite microsatellite genotype, an indication of recent population isolation and restricted gene flow between locales. The savannah elephants show significantly lower genetic diversity than forest elephants, probably reflecting a founder effect in the recent history of the savannah species.  相似文献   

13.
Gymnadenia conopsea (L.) R. Br., or the fragrant orchid, is one of many plant species negatively influenced by new practices in agriculture and forestry during the last decades. This study describes the level of microsatellite variation within and among 10 Swedish populations of this species. It was not possible to detect strong effects of small population size or fragmentation. In general, the species had high genetic variation within and low genetic divergence among populations, although the correlation between population size and number of alleles was close to significance at the 95% level. Also, a significant isolation by distance effect was observed, indicating the presence of modest restrictions in gene dispersal between the investigated populations.  相似文献   

14.
15.
The evolution of marine larvae is replete with transitions in trophic mode, but little is known about how, at the genetic level, these transitions are achieved. Basic parameters, including the number of underlying loci, their molecular characteristics, and the population-genetic processes that drive transitions remain unknown. Streblospio benedicti, an abundant benthic polychaete with heritable poecilogony, provides a unique genetically tractable system for addressing these issues. Individuals of S. benedicti vary in diverse aspects of development. Some females produce small, planktotrophic larvae, whereas others produce large, yolky larvae capable of settling without feeding. Here, I present estimates of basic features of nuclear genetic variation in S. benedicti to lay the foundations for subsequent efforts to understand the genetic basis of poecilogony. Sequence of ~20?kb of random nuclear DNA indicates that the nucleotide composition, at 62.1% A?+?T, is typical of lophotrochozoan genomes. Population-genetic data, acquired by sequencing two loci (~2500 bp) in multiple animals of each developmental morph, indicate that the morphs exhibit very little differentiation at random loci. Nucleotide heterozygosity (θπ) is ~0.5-1% per site, and linkage disequilibrium decays within a few kilobases (ρ ~?3?×?10(-3) per site). These data suggest that genetic mapping by association will require a high density of markers, but linkage mapping and identification of regions of elevated inter-morph differentiation hold great promise.  相似文献   

16.
17.
Previous studies have investigated the human population history of eastern North America by examining mitochondrial DNA (mtDNA) variation among Native Americans, but these studies could only reconstruct maternal population history. To evaluate similarities and differences in the maternal and paternal population histories of this region, we obtained DNA samples from 605 individuals, representing 16 indigenous populations. After amplifying the amelogenin locus to identify males, we genotyped 8 binary polymorphisms and 10 microsatellites in the male-specific region of the Y chromosome. This analysis identified 6 haplogroups and 175 haplotypes. We found that sociocultural factors have played a more important role than language or geography in shaping the patterns of Y chromosome variation in eastern North America. Comparisons with previous mtDNA studies of the same samples demonstrate that male and female demographic histories differ substantially in this region. Postmarital residence patterns have strongly influenced genetic structure, with patrilocal and matrilocal populations showing different patterns of male and female gene flow. European contact also had a significant but sex-specific impact due to a high level of male-mediated European admixture. Finally, this study addresses long-standing questions about the history of Iroquoian populations by suggesting that the ancestral Iroquoian population lived in southeastern North America.  相似文献   

18.
The evolutionary relationships of 186 accessions ofCapsicum from Mexico were studied through enzyme electrophoresis. A total of 76 alleles representing 20 genetic loci coding for nine enzyme systems were observed and the allelic variations of enzymes were studied for geographical distribution. Allele frequencies were used to estimate the apportionment of gene diversity within and between populations and to construct a dendrogram based on a similarity matrix containingNei genetic distances. — The gene diversity estimates suggest that the structure ofCapsicum populations in Mexico consists of predominantly homozygous genotypes presumably due to a self-pollinated breeding system and population bottlenecks. Significant genetic differentiation was found mainly between populations of differing geographical regions.—Based on the results of this study, three species of domesticatedCapsicum can be identified in Mexico,C. annuum var.annuum, C. chinense, andC. pubescens. Semidomesticated and wild forms include two species,C. frutescens andC. annuum var.glabriusculum. A sharp geographical division results between the latter species;C. frutescens was collected exclusively in the southeastern states of Oaxaca, Chiapas, and Tabasco; whereas wild and semidomesticated forms from the rest of the country areC. annuum. Based upon the similarity of enzyme genotypes of semidomesticated and wild forms, the primary center of domestication of cultivatedC. annuum was estimated to be the region comprising the states of Tamaulipas, Nuevo Leon, San Luis Potosi, Veracruz, and Hidalgo in eastern Mexico. A possible second center of domestication is suggested to be localized in the state of Nayarit, western Mexico.  相似文献   

19.
20.
Patterns of molecular genetic variation were examined in seed collections of Plantago major and Plantago intermedia , used previously to investigate the variations in ozone (O3) resistance of these species across Europe. Total genomic DNA was amplified with random primers (random amplied polymorphic DNA (RAPD) and inter- single sequence repeats (SSR)) to produce 73 genetic markers. In addition, allozyme and chloroplast variations were surveyed. Genetic markers were examined for association with O3 resistance in 18 British populations of P. major as well as 27 continental European populations of P. major and P. intermedia . Two populations that exhibited increased resistance to O3 following several years' exposure to high O3 concentrations in the field showed decreased genetic variation over time. In addition, their genetic composition showed no drastic change, which suggests that the change in resistance to O3 was probably the result of selection on genotypes already present in local populations (selection in situ ). It appears that selection for O3 resistance may occur in independent populations, and also may involve a number of genetically determined traits. Consequently the finding that plants with similar degrees of O3 resistance are not closely related was not unexpected. However, the finding of an association of several genetic markers with O3 resistance merits further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号