首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kalata B1 is a prototypic member of the unique cyclotide family of macrocyclic polypeptides in which the major structural features are a circular peptide backbone, a triple-stranded beta-sheet, and a cystine knot arrangement of three disulfide bonds. The cyclotides are the only naturally occurring family of circular proteins and have prompted us to explore the concept of acyclic permutation, i.e. opening the backbone of a cross-linked circular protein in topologically permuted ways. We have synthesized the complete suite of acyclic permutants of kalata B1 and examined the effect of acyclic permutation on structure and activity. Only two of six topologically distinct backbone loops are critical for folding into the native conformation, and these involve disruption of the embedded ring in the cystine knot. Surprisingly, it is possible to disrupt regions of the beta-sheet and still allow folding into native-like structure, provided the cystine knot is intact. Kalata B1 has mild hemolytic activity, but despite the overall structure of the native peptide being retained in all but two cases, none of the acyclic permutants displayed hemolytic activity. This loss of activity is not localized to one particular region and suggests that cyclization is critical for hemolytic activity.  相似文献   

2.
YT Lee  TH Su  WC Lo  PC Lyu  SC Sue 《PloS one》2012,7(8):e43820
Split-protein systems have emerged as a powerful tool for detecting biomolecular interactions and reporting biological reactions. However, reliable methods for identifying viable split sites are still unavailable. In this study, we demonstrated the feasibility that valid circular permutation (CP) sites in proteins have the potential to act as split sites and that CP prediction can be used to search for internal permissive sites for creating new split proteins. Using a protein ligase, intein, as a model, CP predictor facilitated the creation of circular permutants in which backbone opening imposes the least detrimental effects on intein folding. We screened a series of predicted intein CPs and identified stable and native-fold CPs. When the valid CP sites were introduced as split sites, there was a reduction in folding enthalpy caused by the new backbone opening; however, the coincident loss in entropy was sufficient to be compensated, yielding a favorable free energy for self-association. Since split intein is exploited in protein semi-synthesis, we tested the related protein trans-splicing (PTS) activities of the corresponding split inteins. Notably, a novel functional split intein composed of the N-terminal 36 residues combined with the remaining C-terminal fragment was identified. Its PTS activity was shown to be better than current reported two-piece intein with a short N-terminal segment. Thus, the incorporation of in silico CP prediction facilitated the design of split intein as well as circular permutants.  相似文献   

3.
The phenomena of protein reconstitution and three-dimensional domain swapping reveal that highly similar structures can be obtained whether a protein is comprised of one or more polypeptide chains. In this review, we use protein reconstitution as a lens through which to examine the range of protein tolerance to chain interruptions and the roles of the primary structure in related features of protein structure and folding, including circular permutation, natively unfolded proteins, allostery, and amyloid fibril formation. The results imply that noncovalent interactions in a protein are sufficient to specify its structure under the constraints imposed by the covalent backbone.  相似文献   

4.
5.
To assess the relative importance of backbone hydrogen bonding (H-bonding) vs. side chain hydrophobicity in protein structural formation, a method called side chain-backbone swap is proposed. Such a method swaps the side chain and backbone portions of certain amino acid residues, such as Asp, Glu, Asn, Gln, Lys, and Arg. Such a swap retains the sequence of a polypeptide and preserves the identity of the backbone linkage. On the other hand, the swap disrupts backbone H-bonding geometry because of the introduction of extra methylene groups into the peptide backbone. In this project, we chose the two-stranded alpha-helical coiled-coil to implement side chain-backbone swap. A pair of 36-residue peptides was designed. The two peptides have identical sequence with four residues in each heptad repeat occupied by glutamyl residues. Each glutamic acid was incorporated either as alpha-glutamyl residue (the peptide is denoted as alpha-Glu-36) or as gamma-glutamyl residue (the peptide is denoted as gamma-Glu-36). The inter-conversion between the two peptides constitutes a side chain-backbone swap. Residues constituting the hydrophobic core of the coiled-coil, however, are left unchanged. The peptide pair was characterized by circular dichroism spectroscopy, reversed-phase liquid chromatography (RPLC), and two-dimensional nuclear magnetic resonance (NMR). The results indicate that alpha-Glu-36 is a two-stranded alpha-helical coiled-coil while gamma-Glu-36 lacks stable structural elements. It is concluded that, at least for coiled-coils where hydrophobic interactions are predominantly long-range, local backbone H-bonding is a required for structural formation, consistent with a hierarchic folding mechanism. The methodological implication of side chain-backbone swap is also discussed.  相似文献   

6.
One of the key questions in protein folding is whether polypeptide chains require unique nucleation sites to fold to the native state. In order to identify possible essential polypeptide segments for folding, we have performed a complete circular permutation analysis of a protein in which the natural termini are in close proximity. As a model system, we used the disulfide oxidoreductase DsbA from Escherichia coli, a monomeric protein of 189 amino acid residues. To introduce new termini at all possible positions in its polypeptide chain, we generated a library of randomly circularly permuted dsbA genes and screened for active circularly permuted variants in vivo. A total of 51 different active variants were identified. The new termini were distributed over about 70 % of the polypeptide chain, with the majority of them occurring within regular secondary structures. New termini were not found in approximately 30 % of the DsbA sequence which essentially correspond to four alpha-helices of DsbA. Introduction of new termini into these "forbidden segments" by directed mutagenesis yielded proteins with altered overall folds and strongly reduced catalytic activities. In contrast, all active variants analysed so far show structural and catalytic properties comparable with those of DsbA wild-type. We suggest that random circular permutation allows identification of contiguous structural elements in a protein that are essential for folding and stability.  相似文献   

7.
M J Rooman  J P Kocher  S J Wodak 《Biochemistry》1992,31(42):10226-10238
A recently developed procedure to predict backbone structure from the amino acid sequence [Rooman, M., Kocher, J. P., & Wodak, S. (1991) J. Mol. Biol, 221, 961-979] is fine tuned to identify protein segments, of length 5-15 residues, that adopt well-defined conformations in the absence of tertiary interactions. These segments are obtained by requiring that their predicted lowest energy structures have a sizable energy gap relative to other computed conformations. Applying this procedure to 69 proteins of known structure, we find that regions with largest energy gaps--those having highly preferred conformations--are also the most accurately predicted ones. On the basis of previous findings that such regions correlate well with sites that become structured early during folding, our approach provides the means of identifying such sites in proteins without prior knowledge of the tertiary structure. Furthermore, when predictions are performed so as to ignore the influence of residues flanking each segment along the sequence, a situation akin to excising the considered peptide from the rest of the chain, they offer the possibility of identifying protein segments liable to adopt well-defined conformations on their own. The described approach should have useful applications in experimental and theoretical investigations of protein folding and stability, and aid in designing peptide drugs and vaccines.  相似文献   

8.
A "folding element" is a contiguous peptide segment crucial for a protein to be foldable and is a new concept that could assist in our understanding of the protein-folding problem. It is known that the presence of the complete set of folding elements of dihydrofolate reductase (DHFR) from Escherichia coli is essential for the protein to be foldable. Since almost all of the amino acid residues known to be involved in the early folding events of DHFR are located within the folding elements, a close relationship between the folding elements and early folding events is hypothesized. In order to test this hypothesis, we have investigated whether or not the early folding events are preserved in circular permutants and topological mutants of DHFR, in which the order of the folding elements is changed but the complete set of folding elements is present. The stopped-flow circular dichroism (CD) measurements show that the CD spectra at the early stages of folding are similar among the mutants and the wild-type DHFR, indicating that the presence of the complete set of folding elements is sufficient to preserve the early folding events. We have further examined whether or not sequence perturbation on the folding elements by a single amino acid substitution affects the early folding events of DHFR. The results show that the amino acid substitutions inside of the folding elements can affect the burst-phase CD spectra, whereas the substitutions outside do not. Taken together, these results indicate that the above hypothesis is true, suggesting a close relationship between the foldability of a protein and the early folding events. We propose that the folding elements interact with each other and coalesce to form a productive intermediate(s) early in the folding, and these early folding events are important for a protein to be foldable.  相似文献   

9.

Background

In plant organelles, specific messenger RNAs (mRNAs) are subjected to conversion editing, a process that often converts the first or second nucleotide of a codon and hence the encoded amino acid. No systematic patterns in converted sites were found on mRNAs, and the converted sites rarely encoded residues located at the active sites of proteins. The role and origin of RNA editing in plant organelles remain to be elucidated.

Results

Here we study the relationship between amino acid residues encoded by edited codons and the structural characteristics of these residues within proteins, e.g., in protein-protein interfaces, elements of secondary structure, or protein structural cores. We find that the residues encoded by edited codons are significantly biased toward involvement in helices and protein structural cores. RNA editing can convert codons for hydrophilic to hydrophobic amino acids. Hence, only the edited form of an mRNA can be translated into a polypeptide with helix-preferring and core-forming residues at the appropriate positions, which is often required for a protein to form a functional three-dimensional (3D) structure.

Conclusion

We have performed a novel analysis of the location of residues affected by RNA editing in proteins in plant organelles. This study documents that RNA editing sites are often found in positions important for 3D structure formation. Without RNA editing, protein folding will not occur properly, thus affecting gene expression. We suggest that RNA editing may have conferring evolutionary advantage by acting as a mechanism to reduce susceptibility to DNA damage by allowing the increase in GC content in DNA while maintaining RNA codons essential to encode residues required for protein folding and activity.  相似文献   

10.
The structural and folding requirements of eukaryotic cytochromes c have been investigated by determining the appropriate DNA sequences of a collection of 46 independent cyc 1 missense mutations obtained in the yeast Saccharomyces cerevisiae and by deducing the corresponding amino acid replacements that abolish function of iso-1-cytochrome c. A total of 33 different replacements at 19 amino acid positions were uncovered in this and previous studies. Because all of these nonfunctional iso-1-cytochromes c are produced at far below the normal level and because a representative number are labile in vitro, most of the replacements appear to be affecting stability of the protein or heme attachment. By considering the tertiary structure of related cytochromes c, the loss of function of most of the mutant iso-1-cytochromes c could be attributed to either replacements of critical residues that directly interact with the heme group or to replacements that disrupt the proper folding of the protein. The replacements of residues interacting with the heme group include those required for covalent attachment (Cys-19 and Cys-22), ligand formation (His-23 and Met-85), and formation of the immediate heme environment (Leu-37, Tyr-53, Trp-64, and Leu-73). Proper folding of the protein is prevented by replacements of glycine residues at sites that cannot accommodate side chains (Gly-11 and Gly-34); by replacements of residues with proline, which limit the torsion angle (Leu-14 and His-38); and by replacements apparently unable to direct the local folding of the backbone into the proper conformation (Pro-35, Tyr-72, Asn-75, Pro-76, Lys-84, Leu-99, and Leu-103). Even though most of the missense mutations occurred at sites corresponding to evolutionarily invariant or conserved residues, a consideration of the replacements in functional revertants indicates that the requirement for residues evolutionarily preserved is less stringent than commonly assumed.  相似文献   

11.
The role played by the degree of folding of protein backbones in explaining the binding energetics of protein-ligand interactions has been studied. We analyzed the protein/peptide interactions in the RNase-S system in which amino acids at two positions of the peptide S have been mutated. The global degree of folding of the protein S correlates in a significant way with the free energy and enthalpy of the protein-peptide interactions. A much better correlation is found with the local contribution to the degree of folding of one amino acid residue: Thr36. This residue is shown to have a destabilizing interaction with Lys41, which interacts directly with peptide S. Another system, consisting of the interactions of small organic molecules with HIV-1 protease was also studied. In this case, the global change in the degree of folding of the protease backbone does not explain the binding energetics of protein-ligand interactions. However, a significant correlation is observed between the free energy of binding and the contribution of two amino acid residues in the HVI-1 protease: Gly49 and Ile66. In general, it was observed that the changes in the degree of folding are not restricted to the binding site of the protein chain but are distributed along the whole protein backbone. This study provides a basis for further consideration of the degree of folding as a parameter for empirical structural parametrizations of the binding energetics of protein folding and binding.  相似文献   

12.
Various topologies for representing 3D protein structures have been advanced for purposes ranging from prediction of folding rates to ab initio structure prediction. Examples include relative contact order, Delaunay tessellations, and backbone torsion angle distributions. Here, we introduce a new topology based on a novel means for operationalizing 3D proximities with respect to the underlying chain. The measure involves first interpreting a rank‐based representation of the nearest neighbors of each residue as a permutation, then determining how perturbed this permutation is relative to an unfolded chain. We show that the resultant topology provides improved association with folding and unfolding rates determined for a set of two‐state proteins under standardized conditions. Furthermore, unlike existing topologies, the proposed geometry exhibits fine scale structure with respect to sequence position along the chain, potentially providing insights into folding initiation and/or nucleation sites.  相似文献   

13.
S J Demarest  Y Hua  D P Raleigh 《Biochemistry》1999,38(22):7380-7387
There are a small number of peptides derived from proteins that have a propensity to adopt structure in aqueous solution which is similar to the structure they possess in the parent protein. There are far fewer examples of protein fragments which adopt stable nonnative structures in isolation. Understanding how nonnative interactions are involved in protein folding is crucial to our understanding of the topic. Here we show that a small, 11 amino acid peptide corresponding to residues 101-111 of the protein alpha-lactalbumin is remarkably structured in isolation in aqueous solution. The peptide has been characterized by 1H NMR, and 170 ROE-derived constraints were used to calculate a structure. The calculations yielded a single, high-resolution structure for residues 101-107 that is nonnative in both the backbone and side-chain conformations. In the pH 6.5 crystal structure, residues 101-105 are in an irregular turn-like conformation and residues 106-111 form an alpha-helix. In the pH 4.2 crystal structure, residues 101-105 form an alpha-helix, and residues 106-111 form a loopike structure. Both of these structures are significantly different from the conformation adopted by our peptide. The structure in the peptide model is primarily the result of local side-chain interactions that force the backbone to adopt a nonnative 310/turn-like structure in residues 103-106. The structure in aqueous solution was compared to the structure in 30% trifluoroethanol (TFE), and clear differences were observed. In particular, one of the side-chain interactions, a hydrophobic cluster involving residues 101-105, is different in the two solvents and residues 107-111 are considerably more ordered in 30% TFE. The implications of the nonnative structure for the folding of alpha-lactalbumin is discussed.  相似文献   

14.
Paramagnetic relaxation has been used to monitor the formation of structure in the folding peptide chain of guanidinium chloride-denatured acyl-coenzyme A-binding protein. The spin label (1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3-methyl)methanesulfonate (MTSL) was covalently bound to a single cysteine residue introduced into five different positions in the amino acid sequence. It was shown that the formation of structure in the folding peptide chain at conditions where 95% of the sample is unfolded brings the relaxation probe close to a wide range of residues in the peptide chain, which are not affected in the native folded structure. It is suggested that the experiment is recording the formation of many discrete and transient structures in the polypeptide chain in the preface of protein folding. Analysis of secondary chemical shifts shows a high propensity for alpha-helix formation in the C-terminal part of the polypeptide chain, which forms an alpha-helix in the native structure and a high propensity for turn formation in two regions of the polypeptide that form turns in the native structure. The results contribute to the idea that native-like structural elements form transiently in the unfolded state, and that these may be of importance to the initiation of protein folding.  相似文献   

15.
Experimental evidence and theoretical models both suggest that protein folding is initiated within specific fragments intermittently adopting conformations close to that found in the protein native structure. These folding initiation sites encompassing short portions of the protein are ideally suited for study in isolation by computational methods aimed at peering into the very early events of folding. We have used Molecular Dynamics (MD) technique to investigate the behavior of an isolated protein fragment formed by residues 85 to 102 of barnase that folds into a β hairpin in the protein native structure. Three independent MD simulations of 1.3 to 1.8 ns starting from unfolded conformations of the peptide portrayed with an all-atom model in water were carried out at gradually decreasing temperature. A detailed analysis of the conformational preferences adopted by this peptide in the course of the simulations is presented. Two of the unfolded peptide conformations fold into a hairpin characterized by native and a larger bulk of nonnative interactions. Both refolding simulations substantiate the close relationship between interstrand compactness and hydrogen bonding network involving backbone atoms. Persistent compactness witnessed by side-chain interactions always occurs concomitantly with the formation of backbone hydrogen bonds. No highly populated conformations generated in a third simulation starting from the remotest unfolded conformer relative to the native structure are observed. However, nonnative long-range and medium-range contacts with the aromatic moiety of Trp94 are spotted, which are in fair agreement with a former nuclear magnetic resonance study of a denaturing solution of an isolated barnase fragment encompassing the β hairpin. All this lends reason to believe that the 85–102 barnase fragment is a strong initiation site for folding. Proteins 29:212–227, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
CD and nmr spectroscopy were used to compare the conformational properties of two related peptides. One of the peptides, Model AB, was designed to adopt a helix-turn-extended strand (αβ) tertiary structure in water that might be stabilized by hydrophobic interactions between two leucine residues in the amino-terminal segment and two methionine residues in the carboxyl terminal segment. The other peptide, AB Helix, has the same amino acid sequence as Model AB except that it lacks the-Pro-Met-Thr-Met-Thr-Gly segment at the carboxyl-terminus. Although the carboxyl-terminal segment of Model AB was found to be unstructured, its presence increases the number of residues in a helical conformation, shifts the pKas of three ionizable side chains by 1 pH unit or more compared to an unstructured peptide, stabilizes the peptide as a monomer in high concentrations of ammonium sulfate, increases the conformational stability of residues at the terminal ends of the helix, and results in many slowly exchanging amide protons throughout the entire backbone of the peptide. These results suggest that interactions between adjacent segments in a small peptide can have significant structure organizing effects. Similar kinds of interactions may be important in determining the structure of early intermediates in protein folding and may be useful in the de novo design of independently folding peptides. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
18.
Conformation of a T cell stimulating peptide in aqueous solution   总被引:4,自引:0,他引:4  
Using two-dimensional NMR spectroscopy and circular dichroism spectroscopy it is demonstrated that a T cell stimulating peptide corresponding to residues 132-153 of sperm whale myoglobin populates helical conformations in aqueous solution. This finding is in accordance with proposals that immunodominant sites in T cell stimulating peptides have a high conformational propensity. The observation of secondary structure in aqueous solutions of this and other immunogenic peptides has important implications for initiation of protein folding.  相似文献   

19.
The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys1-Cys18 disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.  相似文献   

20.
A simple alternative method for obtaining "random coil" chemical shifts by intrinsic referencing using the protein's own peptide sequence is presented. These intrinsic random coil backbone shifts were then used to calculate secondary chemical shifts, that provide important information on the residual secondary structure elements in the acid-denatured state of an acyl-coenzyme A binding protein. This method reveals a clear correlation between the carbon secondary chemical shifts and the amide secondary chemical shifts 3-5 residues away in the primary sequence. These findings strongly suggest transient formation of short helix-like segments, and identify unique sequence segments important for protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号