首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) reacts with thiol-containing biomolecules to form S-nitrosothiols (RSNOs). RSNOs are considered as NO reservoirs as they generate NO by homolytic cleavage. Ceruloplasmin has recently been suggested to have a potent catalytic activity towards RSNO production. Considering that NO activity is impaired in hypercholesterolemia and that RSNOs may act as important NO donors, we investigated the relation between concentrations of ceruloplasmin and RSNOs in plasma of hypercholesterolemic (HC) patients compared to normolipidemic (N) controls. Concentrations of ceruloplasmin (0.36 +/- 0.07 x 0.49 +/- 0.11 mg/dl, N x HC), nitrate (19.10 +/- 12.03 x 40.19 +/- 18.70 microM, N x HC), RSNOs (0.25 +/- 0.20 x 0.54 +/- 0.26 microM, N x HC), nitrated LDL (19.51 +/- 6.98 x 35.29 +/- 17.57 nM nitro-BSA equivalents, N x HC), and cholesteryl ester-derived hydroxy/hydroperoxides (CEOOH, 0.19 +/- 0.06 x 1.46 +/- 0.97 microM) were increased in plasma of HC as compared to N. No difference was found for nitrite levels between the two groups (1.01 +/- 0.53 x 1.02 +/- 0.33 microM, N x HC). The concentrations of RSNOs, nitrate, and nitrated LDL were positively correlated to those of total cholesterol, LDL cholesterol, and apoB. Ceruloplasmin levels were directly correlated to apoB and apoE concentrations. Data suggest that: (i) ceruloplasmin may have a role in the enhancement of RSNOs found in hypercholesterolemia; (ii) the lower NO bioactivity associated with hypercholesterolemia is not related to a RSNOs paucity or a defective NO release from RSNOs; and (iii) the increased nitrotyrosine levels found in hypercholesterolemia indicate that superoxide radicals contribute to inactivation of NO, directly generated by NO synthase or originated by RSNO decomposition.  相似文献   

2.
The tri-iodide-based chemiluminescence assay is the most widely used methodology for the detection of S-nitrosothiols (RSNOs) in biological samples. Because of the low RSNO levels detected in a number of biological compartments using this assay, criticism has been raised that this method underestimates the true values in biological samples. This claim is based on the beliefs that (i) acidified sulfanilamide pretreatment, required to remove nitrite, leads to RSNO degradation and (ii) that there is auto-capture of released NO by heme in the reaction vessel. Because our laboratories have used this assay extensively without ever encountering evidence that corroborated these claims, we sought to experimentally address these issues using several independent techniques. We find that RSNOs of glutathione, cysteine, albumin, and hemoglobin are stable in acidified sulfanilamide as determined by the tri-iodide method, copper/cysteine assay, Griess-Saville assay and spectrophotometric analysis. Quantitatively there was no difference in S-nitroso-hemoglobin (SNOHb) or S-nitroso-albumin (SNOAlb) using the tri-iodide method and a recently described modified assay using a ferricyanide-enhanced reaction mix at biologically relevant NO:heme ratios. Levels of SNOHb detected in human blood ranged from 20-100 nM with no arterial-venous gradient. We further find that 90% of the total NO-related signal in blood is caused by erythrocytic nitrite, which may partly be bound to hemoglobin. We conclude that all claims made thus far that the tri-iodide assay underestimates RSNO levels are unsubstantiated and that this assay remains the "gold standard" for sensitive and specific measurement of RSNOs in biological matrices.  相似文献   

3.
One-electron reduction of S-nitrosothiols (RSNO) has been studied using radiolytically produced reducing entity, the hydrated electron (e(aq)(-)), in aqueous medium. Both kinetics of the reaction and the mechanistic aspects of the decomposition of S-nitroso derivatives of glutathione, L-cysteine, N-acetyl-L-cysteine, N-acetyl-D,L-penicillamine, N-acetylcysteamine, L-cysteine methyl ester, and D,L-penicillamine have been investigated at neutral and acidic pH. The second-order rate constants of the reaction of e(aq)(-) with RSNOs were determined using a pulse radiolysis technique and were found to be diffusion controlled (10(10) dm(3) mol(-1) s(-1)) at neutral pH. The product analysis using HPLC, fluorimetry, and MS revealed the formation of thiol and nitric oxide as the major end products. It is therefore proposed that one-electron reduction of RSNO leads to the liberation of NO. There is no intermediacy of a thiyl radical as in the case of oxidation reactions of RSNOs. The radical anion of RSNO (RSN(*)O(-)) is proposed as a possible intermediate. The overall reaction could be written as RSNO + e(aq)(-) --H+--> RSH + (*)NO.  相似文献   

4.
Nitric oxide (NO)-mediated nitrosation reactions are involved in cell signaling and pathology. Recent efforts have focused on elucidating the role of S-nitrosothiols (RSNO) in different biological systems, including human plasma, where they are believed to represent a transport and buffer system that controls intercellular NO exchange. Although RSNOs have been implicated in cardiovascular disease processes, it is yet unclear what their true physiological concentration is, whether a change in plasma concentration is causally related to the underlying pathology or purely epiphenomenological, and to what extent other nitrosyl adducts may be formed under the same conditions. Therefore, using gas phase chemiluminescence and liquid chromatography we sought to quantify the basal plasma levels of NO-related metabolites in 18 healthy volunteers. We find that in addition to the oxidative products of NO metabolism, nitrite (0.20 +/- 0.02 micromol/l nitrite) and nitrate (14.4 +/- 1.7 micromol/l), on average human plasma contains an approximately 5-fold higher concentration of N-nitroso species (32.3 +/- 5.0 nmol/l) than RSNOs (7.2 +/- 1.1 nmol/l). Both N- and S-nitroso moieties appear to be associated with the albumin fraction. This is the first report on the constitutive presence of a high-molecular-weight N-nitroso compound in the human circulation, raising the question as to its origin and potential physiological role. Our findings may not only have important implications for the transport of NO in vivo, but also for cardiovascular disease diagnostics and the risk assessment of nitrosamine-related carcinogenesis in man.  相似文献   

5.
Many different methodologies have been applied for the detection of S-nitrosothiols (RSNOs) in human biological fluids. One unsatisfactory outcome of the last 14 years of research focused on this issue is that a general consensus on reference values for physiological RSNO concentration in human blood is still missing. Consequently, both RSNO physiological function and their role in disease have not yet been clarified. Here, a summary of the values measured for RSNOs in erythrocytes, plasma, and other biological fluids is provided, together with a critical review of the most widely used analytical methods. Furthermore, some possible methodological drawbacks, responsible for the highlighted discrepancies, are evidenced.  相似文献   

6.
Although the nitric oxide (.NO)-mediated nitrosation of thiol-containing molecules is increasingly recognized as an important post-translational modification in cell signaling and pathology, little is known about the factors that govern this process in vivo. In the present study, we examined the chemical pathways of nitrosothiol (RSNO) production at low micromolar concentrations of .NO. Our results indicate that, in addition to nitrosation by the .NO derivative dinitrogen trioxide (N2O3), RSNOs may be formed via intermediate one-electron oxidation of thiols, possibly mediated by nitrogen dioxide (.NO2), and the subsequent reaction of thiyl radicals with .NO. In vitro, the formation of S-nitrosoglutathione (GSNO) from .NO and excess glutathione (GSH) was accompanied by the formation of glutathione disulfide, which could not be ascribed to the secondary reaction of GSH with GSNO. Superoxide dismutase significantly increased GSNO yields and the thiyl radical trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), inhibited by 45 and 98% the formation of GSNO and GSSG, respectively. Maximum nitrosation yields were obtained at an oxygen concentration of 3%, whereas higher oxygen tensions decreased GSNO and increased GSSG formation. When murine fibroblasts were exposed to exogenous .NO, RSNO formation was sensitive to DMPO and oxygen tension in a manner similar to that observed with GSH alone. Our data indicate that RSNO formation is favored at oxygen concentrations that typically occur in tissues. Nitrosothiol formation in vivo depends not only on the availability of .NO and O2 but also on the degree of oxidative stress by affecting the steady-state concentration of thiyl radicals.  相似文献   

7.
R Xu  J R Sowers  D F Skafar  J L Ram 《Life sciences》2001,69(23):2811-2817
The interaction between hydrocortisone and estradiol on the regulation of endothelial nitric oxide synthase (eNOS) expression was investigated in human umbilical vein endothelial cells (HUVECs). Following incubation in medium containing dextran-coated-charcoal-stripped serum (DCC-stripped medium) for 4 days, incubation of HUVECs with 0.1 nM estradiol for 24 hr in the absence of hydrocortisone increased levels of eNOS mRNA measured by ribonuclease protection assay above control (0 nM estradiol). 2 microM hydrocortisone applied for 24 hr preceding and during estradiol application inhibited the estradiol-elicited increase in eNOS mRNA levels, reducing mRNA levels from 134% +/- 14% of control to 85% +/- 5% of control. Significant (ANOVA, p<0.01) reductions of estradiol-mediated increases of mRNA levels occurred over a range of hydrocortisone concentrations (10 nM, p<0.05; 2 microM, p<0.05; n=3-12). In the presence of 2 microM hydrocortisone, 10 nM estradiol significantly reduced eNOS mRNA levels to 59% +/- 3% of control. The ability of hydrocortisone to block or reverse the estradiol-mediated increase in eNOS mRNA levels may provide a link between elevated hydrocortisone levels and decreased NO production, potentially contributing to the development of hypertension and cardiovascular disease in vivo and antagonizing cardioprotective effects of estrogens.  相似文献   

8.
Many of the local UV-induced responses including erythema and edema formation, inflammation, premature aging, and immune suppression can be influenced by nitric oxide synthase (NOS)-produced NO which is known to play a pivotal role in cutaneous physiology. Besides NOS-mediated NO production, UV radiation might trigger an enzyme-independent NO formation in human skin by a mechanism comprising the decomposition of photo-reactive nitrogen oxides. Therefore, we have examined the chemical-storage forms of potential NO-generating agents, the mechanisms and kinetics of their decomposition, and their biological relevance. In normal human skin specimens we find nitrite and S-nitrosothiols (RSNO) at concentrations 25- or 360-fold higher than those found in plasma of healthy volunteers. UVA irradiation of human skin leads to high-output formation of bioactive NO due to photo-decomposition of RSNO and nitrite which represents the primary basis for NO formation during UVA exposure. Interestingly, reduced thiols strongly augment photo-decomposition of nitrite and are essential for maximal NO release. The enzyme-independent NO formation found in human skin opens a completely new field in cutaneous physiology and will extend our understanding of mechanisms contributing to skin aging, inflammation, and cancerogenesis.  相似文献   

9.
S-nitrosothiols (RSNO) are involved in post-translational modifications of many proteins analogous to protein phosphorylation. In addition, RSNO have many physiological roles similar to nitric oxide (?NO), which are presumably involving the release of ?NO from the RSNO. However, the much longer life span in biological systems for RSNO than ?NO suggests a dominant role for RSNO in mediating ?NO bioactivity. RSNO are detected in plasma in low nanomolar levels in healthy human subjects. These RSNO are believed to be redirecting the ?NO to the vasculature. However, the mechanism for the formation of RSNO in vivo has not been established. We have reviewed the reactions of ?NO with oxygen, metalloproteins, and free radicals that can lead to the formation of RSNO and have evaluated the potential for each mechanism to provide a source for RSNO in vivo.  相似文献   

10.
Neonatal cattle and in part neonates of other species have manyfold higher plasma concentrations of nitrite plus nitrate than mature cows and subjects of other species, suggesting an enhanced and needed activation of the nitric oxide (NO) axis at birth. While the biological half-life of NO is short (<1 sec), its functionality can be prolonged, and in many regards more discretely modulated, when it reacts with low-molecular-weight and protein-bound thiols to form S-nitrosothiols (RSNO), from which NO subsequently can be rereleased. We used the calf as a model to test the hypothesis that plasma concentrations of RSNO are elevated at birth in mammals, correlate with ascorbate and urate levels, are selectively generated in critical tissue beds, and are generated in a manner temporally coincident with changes in tissue levels of active NO synthases (NOS). Plasma concentrations of RSNO, ascorbate, and urate were highest immediately after birth (Day 0), dropped >50% on Day 1, and gradually decreased over time, reaching a nadir in mature cattle. Albumin and immunoglobulin G were identified as major plasma RSNO. The presence of S-nitrosocysteine (SNC, a validated marker for S-nitrosylated proteins), inducible NOS (iNOS), and activated endothelial NOS (eNOS phosphorylated at Ser1177) in different tissues was analyzed by immunohistochemistry in another group of similar-aged calves. SNC, iNOS, and phosphorylated eNOS were detected in liver and ileum at the earliest timepoint of sampling (4 hrs after birth), increased between 4 and 24 hrs, and then declined to near-nondetectable levels by 2 weeks of life. Our data show that the neonatal period in the bovine species is characterized by highly elevated and coordinated NO-generating and nitrosylation events, with the ontogenetic changes occurring in iNOS and eNOS contents in key tissues as well as RSNO products and associated antioxidant markers.  相似文献   

11.
12.
Measurement of 3-nitro-L-tyrosine (NO(2)Tyr) and protein-related 3-nitro-L-tyrosine in human plasma is associated with numerous methodological problems which result in highly divergent basal plasma levels often ranging within two orders of magnitude. Recently, we have described an interference-free GC-tandem MS-based method for NO(2)Tyr which yielded the lowest basal plasma NO(2)Tyr levels reported thus far. This method was extended to quantify protein-associated 3-nitrotyrosine and in particular 3-nitrotyrosinated albumin (NO(2)TyrALB) in human plasma. NO(2)TyrALB and albumin (ALB) were extracted from plasma by affinity column extraction and digested enzymatically at neutral pH. 3-Nitro- L-[2H(3)]tyrosine was used as internal standard. In plasma of 18 healthy young volunteers the molar ratio of NO(2)TyrALB to albumin-derived tyrosine (TyrALB), i.e. NO(2)TyrALB/TyrALB, was determined to be 1.55+/-0.54x1:10(6) (mean+/-SD). The plasma concentration of NO(2)TyrALB was estimated as 24+/-4 nM. The NO(2)Tyr plasma levels in these volunteers were determined to be 0.73+/-0.53 nM. In the same volunteers, NO(2)TyrALB/TyrALB, NO(2)TyrALB and NO(2)Tyr were measured 15 days later and the corresponding values were determined to be 1.25+/-0.58x1:10(6), 25+/-6 nM and 0.69+/-0.16 nM. For comparison, NO(2)Tyr and NO(2)TyrALB were measured in six plasma samples from healthy volunteers by GC-MS and GC-tandem MS. Different values were found for NO(2)Tyr, i.e. 5.4+/-2.8 versus 2.7+/-1.5 nM, and comparable values for NO(2)TyrALB/TyrALB, i.e. 0.5+/-0.2x1:10(6) versus 0.4+/-0.1x1:10(6), by these methods. The ratio of the values measured by GC-MS to those measured by GC-tandem MS were 2.9+/-3.1 for NO(2)Tyr and 1.2+/-0.2 for NO(2)TyrALB/TyrALB. The present GC-tandem MS method provides accurate values of NO(2)Tyr and NO(2)TyrALB in human plasma.  相似文献   

13.
The measurement of nitric oxide (NO) bioavailability is of great clinical interest in the assessment of vascular health. However, NO is rapidly oxidized to form nitrite and nitrate and thus its direct detection in biological systems is difficult. Venous plasma nitrite (nM concentrations) has been shown to be a marker of forearm NO production following pharmacological stimulation of the endothelium utilizing acetylcholine (Ach). In the present study, we demonstrate, within 15 apparently healthy subjects (34.1 +/- 7.3 years), that reactive hyperemia of the forearm, a physiological endothelial stimulus, results in a 52.5% increase in mean plasma nitrite concentrations (415 +/- 64.0 to 634 +/- 57.1 nM, P = 0.015). However, plasma nitrite is readily oxidized to nitrate within plasma, and thus its utility as a marker of NO production within the clinical setting may be limited. Alternatively, NOx (predominantly nitrate) is relatively stable in plasma (microM concentrations), but is produced by sources other than the vasculature and has been shown to be unsuitable as a measure of localized NO production. We reasoned that the principle source of NOx generation during exercise is NO production and thus have examined the change in NOx following treadmill exercise stress. In this study, 12 apparently healthy subjects showed an increase (from baseline) in venous NOx at peak effort and during recovery (12 +/- 9.1 and 17 +/- 15.3 microM respectively, P < 0.05). In contrast, 10 subjects with cardiovascular disease showed no significant increases. Additionally, a correlation between VO(2peak) and the change in circulating NOx (r(2) = 0.4585, P < or = 0.01) indicated the subjects who could exercise hardest also produced the most NO.  相似文献   

14.
Nitric oxide (NO) participates in the pathogenesis of inflammatory reactions in many autoimmune diseases such as rheumatoid arthritis (RA). There is a reciprocal pathway between arginase and nitric oxide synthese (NOS) for NO production, and Mn is required for arginase activity and stability. To investigate whether NO production related with the arginine-nitric oxide pathway in patients with RA, we measured synovial fluid and plasma nitrite (NOx) levels, arginase activities, and its cofactor manganese (Mn) concentrations in 21 RA patients and 13 healthy control subjects. Plasma albumin levels were measured as an index of nutritional status. NOx levels were determined after the reduction of nitrates to nitrites using the Griess reaction. Whereas, synovial fluid arginase activities and Mn levels were found to be significantly lower (p<0.001, p<0.001, respectively), plasma arginase activities and Mn levels were similar in patients with RA when compared to the control subjects. Plasma and synovial fluid NO levels were similar in patients with RA and in healthy subjects (p>0.05, p>0.05, respectively). There were significantly positive correlations between synovial fluid and plasma arginase activities vs Mn content (r=0.543, p=0.011; r=0.516, p=0.017, respectively) and significantly negative correlations between synovial fluid and plasma NO levels vs arginase activities (r=−0.497, p=0.022; r=−0.508, p=0.019 respectively) in the patients group. Our results indicate that the lower concentration of synovial fluid Mn could cause lower arginase activity and this could also upregulate NO production by increasing L-arginine content in patients with RA.  相似文献   

15.
Insulin sensitivity is maximal in the postprandial state, decreasing with a fasting period through a mechanism that is dependent on the integrity of the hepatic parasympathetic nerves/nitric oxide (NO) production and increased hepatic glutathione (GSH) levels. GSH and NO react to form S-nitrosoglutathione (GSNO), an S-nitrosothiol (RSNO) for which the in-vivo effects are still being determined. The goal of this study was to test the hypothesis that in-vivo administration of RSNOs, GSNO, or S-nitroso-N-acetylpenicillamine (SNAP) increases insulin sensitivity in fasted or fed-denervated animals, but not in fed animals, where full postprandial insulin sensitivity is achieved. Fasted, fed, or fed-denervated male Wistar rats were used as models for different insulin sensitivity conditions. The rapid insulin sensitivity test (RIST) was used to measure insulin-stimulated glucose disposal before and after drug administration (GSNO, SNAP, or 3-morpholinosydnonimine (SIN-1), intravenous (i.v.) or to the portal vein (i.p.v.)). Fast insulin sensitivity was not altered by administration of SIN-1 (neither i.v. nor i.p.v.). Intravenous infusion of RSNOs in fasted and fed hepatic denervated rats increased insulin sensitivity by 126.35% ± 35.43% and 82.7% ± 12.8%, respectively. In fed animals, RSNOs decreased insulin sensitivity indicating a negative feedback mechanism. These results suggest that RSNOs incremental effect on insulin sensitivity represent a promising therapeutical tool in insulin resistance states.  相似文献   

16.
Highly contradictory data exist on the normal plasma basal levels in humans of S-nitrosoproteins, in particular of S-nitrosoalbumin (SNALB), the most abundant nitric oxide (.NO) transport form in the human circulation with a range of three orders of magnitude (i.e., 10 nM-10 microM). In previous work we reported on a GC-MS method for the quantitative determination of SNALB in human plasma. This method is based on selective extraction of SNALB and its 15N-labeled SNALB analog (S(15)NALB) used as internal standard on HiTrapBlue Sepharose affinity columns, HgCl(2)-catalysed conversion of the S-nitroso groups to nitrite and [15N]nitrite, respectively, their derivatization to the pentafluorobenzyl derivatives and quantification by GC-MS. By this method we had measured SNALB basal plasma levels of 181 nM in healthy humans. It is generally accepted that HgCl(2)-catalysed conversion of S-nitroso groups into nitrite is specific. In consideration of the highly divergent SNALB plasma levels in humans reported so far, we were interested in an additional method that would allow specific conversion of S-nitroso groups into nitrite. We found that treatment with cysteine plus CuSO(4) is as effective and specific as treatment with HgCl(2). The principle of the cysteine/CuSO(4) procedure is based on the transfer of the S-nitroso group from SNALB to cysteine yielding S-nitrosocysteine, and its subsequent highly Cu(2+)-sensitive conversion into nitrite via intermediate.NO formation. Similar SNALB concentrations in the plasma of 10 healthy humans were measured by GC-MS using HgCl(2) (156+/-64 nM) and cysteine/CuSO(4) (205+/-96 nM). Our results strongly suggest that SNALB is an endogenous constituent in human plasma and that its concentration is of the order of 150-200 nM under physiological conditions.  相似文献   

17.
The effects of NO-related activity and cellular thiol redox state on basal L-type calcium current, ICa,L, in ferret right ventricular myocytes were studied using the patch clamp technique. SIN-1, which generates both NO. and O2-, either inhibited or stimulated ICa,L. In the presence of superoxide dismutase only inhibition was seen. 8-Br- cGMP also inhibited ICa,L, suggesting that the NO inhibition is cGMP- dependent. On the other hand, S-nitrosothiols (RSNOs), which donate NO+, stimulated ICa,L. RSNO effects were not dependent upon cell permeability, modulation of SR Ca2+ release, activation of kinases, inhibition of phosphatases, or alterations in cGMP levels. Similar activation of ICa,L by thiol oxidants, and reversal by thiol reductants, identifies an allosteric thiol-containing "redox switch" on the L-type calcium channel subunit complex by which NO/O2- and NO+ transfer can exert effects opposite to those produced by NO. In sum, our results suggest that: (a) both indirect (cGMP-dependent) and direct (S-nitrosylation/oxidation) regulation of ventricular ICa,L, and (b) sarcolemma thiol redox state may be an important determinant of ICa,L activity.  相似文献   

18.
Purified neuronal nitric oxide synthase (NOS) does not produce nitric oxide (NO) unless high concentrations of superoxide dismutase (SOD) are added, suggesting that nitroxyl (NO(-)) or a related molecule is the principal reaction product of NOS, which is SOD-dependently converted to NO. This hypothesis was questioned by experiments using electron paramagnetic resonance spectroscopy and iron N-methyl-D-glucamine dithiocarbamate (Fe-MGD) as a trap for NO. Although NOS and the NO donor S-nitroso-N-acetyl-penicillamine produced an electron paramagnetic resonance signal, the NO(-) donor, Angeli's salt (AS) did not. AS is a labile compound that rapidly hydrolyzes to nitrite, and important positive control experiments showing that AS was intact were lacking. On reinvestigating this crucial experiment, we find identical MGD(2)-Fe-NO complexes both from S-nitroso-N-acetyl-penicillamine and AS but not from nitrite. Moreover, the yield of MGD(2)-Fe-NO complex from AS was stoichiometric even in the absence of SOD. Thus, MGD(2)-Fe directly detects NO(-), and any conclusions drawn from MGD(2)-Fe-NO complexes with respect to the nature of the primary NOS product (NO, NO(-), or a related N-oxide) are invalid. Thus, NOS may form NO(-) or related N-oxides instead of NO.  相似文献   

19.
Sheu FS  Zhu W  Fung PC 《Biophysical journal》2000,78(3):1216-1226
While the biosynthesis of nitric oxide (NO) is well established, one of the key issues that remains to be solved is whether NO participates in the biological responses right after generation through biosynthesis or there is a "secret passage" via which NO itself is trapped, transported, and released to exert its functions. It has been shown that NO reacts with thiol-containing biomolecules (RSH), like cysteine (Cys), glutathione (GSH), etc., to form S-nitrosothiols (RSNOs), which then release nitrogen compounds, including NO. The direct observation of trapping of NO and its release by RSNO has not been well documented, as most of the detection techniques measure the content of NO as well as nitrite and nitrate. Here we use spin-trapping electron paramagnetic resonance (EPR) technique to measure NO content directly in the reaction time course of samples of GSH and Cys ( approximately mM) mixed with NO ( approximately microM) in the presence of metal ion chelator, which pertains to physiological conditions. We demonstrate that NO is readily trapped by these thiols in less than 10 min and approximately 70-90% is released afterward. These data imply that approximately 10-30% of the reaction product of NO does not exist in the free radical form. The NO release versus time curves are slightly pH dependent in the presence of metal ion chelator. Because GSH and Cys exist in high molar concentrations in blood and in mammalian cells, the trapping and release passage of NO by these thiols may provide a mechanism for temporal and spatial sequestration of NO to overcome its concentration gradient-dependent diffusion, so as to exert its multiple biological effects by reacting with various targets through regeneration.  相似文献   

20.
Involvement of free radicals and nitric oxide (NO) has long been implicated to the pathogenesis of essential hypertension. Several studies using antioxidants as the radical scavenger have shown to confer protection against free radical mediated diseases. This study is designed to investigate the role of antioxidant gamma-tocotrienol on endothelial nitric oxide synthase (NOS) activity in spontaneously hypertensive rats (SHR). SHR's were divided into four groups namely untreated SHR (HC), treatment with 15 mg gamma-tocotrienol/kg diet (gammal), 30 mg gamma-tocotrienol/kg diet (gamma2) and 150 mg gamma-tocotrienol/kg diet (gamma3) and studied for three months. Wister Kyoto (WKY) rats were used as the control (C). Blood pressure was recorded every fortnightly by tail plethysmography. Animals were sacrificed and NOS activity in blood vessels was measured by [3H]arginine radioactive assay. Nitrite concentration in plasma was determined by Greis assay and lipid peroxides in the blood vessels by spectrofluorometry. This study showed that gamma-tocotrienol significantly reduced systolic blood pressure (SBP) in SHRs with a maximum reduction in group treated with gamma-tocotrienol 15 mg/kg diet (HC: 210 +/- 9 mmHg, gammal:123 +/- 19 mmHg). Blood vessels from untreated SHR showed a reduced NOS activity compare to that of WKY rats (C: 1.54 +/- 0.26 pmol/mg protein, HC: 0.87 +/- 0.23 pmol/mg protein; p<0.001). Gamma-tocotrienol improves NOS activity in all the groups with more significance in group gamma2 (p<0.001) and gamma3 (p<0.05). Plasma level of nitrite was reduced in SHR from 55 +/- 3 microM/ml in WKY to 26+/-2 muM/ml (p<0.001). Plasma nitrite level was reversed by treatment with gamma-tocotrienol. (gammal: p<0.001, gamma2: p<0.005, gamma3: p<0.001, respectively). In all the treatment groups, NOS activity showed significant negative correlation with blood pressure (gammal: r=-0.716, p<0.05; gamma2: r=-0.709, p<0.05; gamma3: r=-0.789, p<0.05). For plasma nitrite, although it shows a negative correlation with blood pressure it was significant only in gammal (r=-0.676, p<0.05) and gamma2 (r=-0.721, p<0.05). From this study we found that compared to WKY rats, SHR has lower NOS activity in blood vessels, which upon treatment with antioxidant gamma-tocotrienol increased the NO activity and concomitantly reduced the blood pressure. These findings further strengthen the hypothesis that free radicals and NO play critical role in pathogenesis of essential hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号