首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is growing interest in the potential beneficial effects of flavonoids in the aging and diseased brain. We have investigated the potential of the flavanone hesperetin and two of its metabolites, hesperetin-7- O -β- d -glucuronide and 5-nitro-hesperetin, to inhibit oxidative stress-induced neuronal apoptosis. Exposure of cortical neurons to hydrogen peroxide led to the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser963, the phosphorylation of c-jun N-terminal kinase and c-Jun (Ser73) and the activation of caspase 3 and caspase 9. Whilst hesperetin glucuronide failed to exert protection, both hesperetin and 5-nitro-hesperetin were effective at preventing neuronal apoptosis via a mechanism involving the activation/phosphorylation of both Akt/protein kinase B and extracellular signal-regulated kinase 1 and 2 (ERK1/2). Protection against oxidative injury and the activation of Akt and ERK1/2 followed a bell-shaped response and was most apparent at 100 nmol/L concentrations. The activation of ERK1/2 and Akt by flavanones led to the inhibition of the pro-apoptotic proteins, apoptosis signal-regulating kinase 1, by phosphorylation at Ser83 and Bad, by phosphorylation at both Ser136 and Ser112 and to the inhibition of peroxide-induced caspase 9 and caspase 3 activation. Thus, flavanones may protect neurons against oxidative insults via the modulation of neuronal apoptotic machinery.  相似文献   

2.
In addition to a number of deleterious effects on cellular integrity and functions, diabetic metabolic milieu has been implicated in a rapidly growing number of alterations in signal transduction. In this review we focus on Akt kinase physiology, its alterations in diabetes mellitus (DM), and on the emerging role of this signaling system in the pathophysiology of diabetic microvascular complications. Studies focusing on Akt in diabetes suggest both decrease and increase of Akt activity in DM. Alterations of Akt activity have been found in various tissues and cells in diabetes depending on experimental and clinical contexts. There is convincing evidence suggesting defective Akt signaling in the development of insulin resistance. Similar defects, as in insulin-sensitive tissues, have been reported in endothelia of DM Type 2 models, possibly contributing to the development of endothelial dysfunction under these conditions. In contrast, Akt activity is increased in some tissues and vascular beds affected by complications in DM Type 1. Identification of the role of this phenomenon in DM-induced growth and hemodynamic alterations in affected vascular beds remains one of the major challenges for future research in this area. Future studies should include the evaluation of therapeutical benefits of pharmacological modulators of Akt activity.  相似文献   

3.
Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTIs), and they have the capacity to induce the death and exfoliation of target uroepithelial cells. This process can be facilitated by the pore-forming toxin alpha-hemolysin (HlyA), which is expressed and secreted by many UPEC isolates. Here, we demonstrate that HlyA can potently inhibit activation of Akt (protein kinase B), a key regulator of host cell survival, inflammatory responses, proliferation, and metabolism. HlyA ablates Akt activation via an extracellular calcium-dependent, potassium-independent process requiring HlyA insertion into the host plasma membrane and subsequent pore formation. Inhibitor studies indicate that Akt inactivation by HlyA involves aberrant stimulation of host protein phosphatases. We found that two other bacterial pore-forming toxins (aerolysin from Aeromonas species and alpha-toxin from Staphylococcus aureus) can also markedly attenuate Akt activation in a dose-dependent manner. These data suggest a novel mechanism by which sublytic concentrations of HlyA and other pore-forming toxins can modulate host cell survival and inflammatory pathways during the course of a bacterial infection.  相似文献   

4.
Integrins regulate cell viability through their interaction with the extracellular matrix. Integrins can sense mechanical forces arising from the matrix and convert these stimuli to chemical signals capable of modulating intracellular signal transduction. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is a major regulator of cell survival. It is not known, however, whether integrins, acting as mechanoreceptors, regulate cell survival via the PI3K/Akt pathway. Here, we show that in response to a matrix-derived mechanical stimulus, beta1 integrin regulated cell viability by regulating Akt activity in a PI3K-dependent fashion. To accomplish this, we employed fibroblasts cultured in collagen gels. During contraction of collagen matrices, fibroblasts underwent apoptosis. We demonstrate that ligation of beta1 integrin with anti-beta1 integrin antibodies protected fibroblasts from apoptosis. The nature of the survival signal activated by beta1 integrin engagement with antibody was mediated by PI3K acting through Akt/protein kinase B. We show that Akt phosphorylation decreased during collagen contraction and that this decrease correlated precisely with the onset of fibroblast apoptosis. Fibroblasts transfected with constitutively active PI3K displayed increased Akt phosphorylation and were protected from anoikis and collagen gel contraction-induced apoptosis. Our data identify a novel role for beta1 integrin in regulating fibroblast viability through a PI3K/Akt/protein kinase B signaling pathway in response to a matrix-derived mechanical stimulus.  相似文献   

5.
Reelin is a large secreted protein that controls cortical layering by signaling through the very low density lipoprotein receptor and apolipoprotein E receptor 2, thereby inducing tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1) and suppressing tau phosphorylation in vivo. Here we show that binding of Reelin to these receptors stimulates phosphatidylinositol 3-kinase, resulting in activation of protein kinase B and inhibition of glycogen synthase kinase 3beta. We present genetic evidence that this cascade is dependent on apolipoprotein E receptor 2, very low density lipoprotein receptor, and Dab1. Reelin-signaling components are enriched in axonal growth cones, where tyrosine phosphorylation of Dab1 is increased in response to Reelin. These findings suggest that Reelin-mediated phosphatidylinositol 3-kinase signaling in neuronal growth cones contributes to final neuron positioning in the mammalian brain by local modulation of protein kinase B and glycogen synthase kinase 3beta kinase activities.  相似文献   

6.
The serine/threonine protein kinase B (PKB)/Akt is a phosphoinositide 3-kinase (PI3K) effector that is thought to play an important roll in a wide variety of cellular events. The present study examined whether PKB activation in cortical neuronal cultures is coupled with synaptic activity. A 1-h incubation of neuronal cultures with tetrodotoxin (TTX), the PI3K inhibitor wortmannin, the NMDA receptor antagonist MK-801 or removal of extracellular calcium significantly reduced basal levels of phospho(Ser473)-PKB, indicating that activity-dependent glutamate release maintains PKB activation through an NMDA receptor-PI3K pathway. A 5-min exposure to NMDA (50 micro m) in the presence of TTX increased phospho-PKB back to levels observed in the absence of TTX. NMDA stimulation of phospho-PKB was blocked by wortmannin, the CaMKII inhibitor KN-93, MK-801, and removal of extracellular calcium. We have previously shown that NMDA receptors can bi-directionally regulate activation of extracellular-signal regulated kinase (ERK), and NMDA receptor stimulation of PKB in the present study appeared to mirror activation of ERK. These results suggest that in cultured cortical neurons, PKB activity is dynamically regulated by synaptic activity and is coupled to NMDA receptor activation. In addition, NMDA receptor activation of ERK and PKB may occur through overlapping signaling pathways that bifurcate at the level of Ras.  相似文献   

7.
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.  相似文献   

8.
The structure-activity relationships of a series of isoquinoline-pyridine-based protein kinase B/Akt antagonists have been investigated in an effort to improve the major short-comings of the lead compound 3, including poor pharmacokinetic profiles in several species (e.g., mouse i.v. t(1/2) = 0.3 h, p.o. F = 0%). Chlorination at C-1 position of the isoquinoline improved its pharmacokinetic property in mice (i.v. t(1/2) = 5.0 h, p.o. F = 51%) but resulted in >500-fold drop in potency. In a mouse MiaPaCa-2 xenograft model, an amino analog 10y significantly slowed the tumor growth, however was accompanied by toxicity.  相似文献   

9.
10.
The serine-threonine kinase Akt also known as protein kinase B is one of the most studied molecules. In addition to the important role in carcinogenesis, Akt is a major regulator of carbohydrate metabolism. Akt mediates insulin-dependent glucose uptake in insulin-sensitive tissues. Recent evidence underscores the importance of Akt for regulation of beta-cell mass and function. This review summarizes current findings concerning the molecular mechanisms, downstream signaling pathways, and critical components involved in regulation of beta-cell mass and function by Akt. The results of these observations suggest that elucidation of critical downstream effectors of this signaling pathway could generate promising molecules as a potential target to induce proliferation and survival of beta-cells.  相似文献   

11.
The three mammalian members of the protein kinase B/Akt (PKB/Akt) family have been implicated in a plethora of cellular signaling processes with key functions in control of cellular metabolism, growth, proliferation and apoptosis. As a major target of phosphatidylinositol (PI) 3-kinase signaling, the PKB/Akt isoforms also have central roles in a variety of human cancers, with effects on tumor initiation, progression and metastasis. It has been shown that isoform-specific functions of PKB/Akt family members can contribute to tumorigenesis on multiple levels. A series of recent studies documents the isoform-specific functions of PKB/Akt family members in regulation of cellular motility and migration by influencing numerous cellular targets involved in organization of the actin cytoskeleton, cellular interaction with the extracellular matrix, expression of motility genes and establishment of cellular polarity. A thorough insight into the isoform-specific roles of PKB/Akt proteins is essential for a full understanding of the complex biological outcomes elicited by PI 3-kinase and PKB/Akt signaling.  相似文献   

12.
Mohamed Kodiha 《FEBS letters》2009,583(12):1987-21867
ERK and Akt kinases are key components that participate in numerous regulatory processes, including the response to stress. Using novel tools for quantitative immunofluorescence, we show that oxidant exposure controls the intracellular activation and localization of ERK1/2 and Akt. Oxidative stress alters the nuclear/cytoplasmic levels of the kinases, drastically changing phospho-ERK1/2 and phospho-Akt(Ser473) levels in the nucleus. Moreover, pharmacological inhibition of PI3 kinase modulates the intracellular distribution of phospho-ERK1/2, whereas MEK inhibition affects phospho-Akt(Thr308) and phospho-Akt(Ser473). Our studies identify a new signaling link in the nucleus of stressed cells, where changes in phospho-ERK1/2 levels correlate directly with changes in phospho-Akt(Ser473).  相似文献   

13.
The serine/threonine kinase protein kinase B (PKB)/Akt is a critical regulator of insulin signaling, cell survival, and oncogenesis. The activation mechanisms of this key kinase are well characterized. In contrast, inactivation of PKB signaling by phosphatases is less well understood. To study the dynamics of PKB signaling in live cells, we generated a genetically encoded fluorescent reporter for PKB activity that reversibly responds to stimuli activating phosphatidylinositol 3-kinase. Specifically, phosphorylation of the reporter expressed in mammalian cells causes changes in fluorescence resonance energy transfer, allowing real-time imaging of phosphorylation catalyzed by PKB. Because of its reversibility, the reporter also allows termination of PKB signaling by phosphatases to be monitored. We found that PKB signaling in the cytosol was more rapid and more transient compared with that in the nucleus, suggesting the presence of differentially regulated phosphatase activity in these two compartments. Furthermore, targeting of the reporter to the plasma membrane, where PKB is activated, resulted in accelerated and prolonged response compared with the response in the cytosol, suggesting that release of PKB or its substrates from the membrane is required for desensitization of PKB signaling. These data reveal spatio-temporal gradients of both signal propagation and signal termination in PKB signaling.  相似文献   

14.
15.
In cultured bovine adrenal chromaffin cells treated with nicotine (10 µm for 24 h), phosphorylation of Akt, glycogen synthase kinase‐3β (GSK‐3β) and extracellular signal‐regulated kinase (ERK)1/2 induced by insulin (100 nm for 10 min) was enhanced by ~ 62%, without altering levels of these protein kinases. Nicotine produced time (> 12 h)‐ and concentration (EC50 3.6 and 13 µm )‐dependent increases in insulin receptor substrate (IRS)‐1 and IRS‐2 levels by ~ 125 and 105%, without altering cell surface density of insulin receptors. In these cells, insulin‐induced tyrosine phosphorylation of IRS‐1/IRS‐2 and recruitment of phosphoinositide 3‐kinase (PI3K) to IRS‐1/IRS‐2 were augmented by ~ 63%. The increase in IRS‐1/IRS‐2 levels induced by nicotine was prevented by nicotinic acetylcholine receptor (nAChR) antagonists, the Ca2+ chelator 1,2‐bis(2‐aminophenoxy)‐ethane‐N,N,N′,N′‐tetra‐acetic acid tetrakis‐acetoxymethyl ester, cycloheximide or actinomycin D. Nicotine increased IRS‐1 and IRS‐2 mRNA levels by ~ 57 and ~ 50%, and this was prevented by conventional protein kinase C (cPKC) inhibitor Gö6976, or ERK kinase inhibitors PD98059 and U0126. Nicotine phosphorylated cPKC‐α, thereby increasing phosphorylation of ERK1/ERK2, as demonstrated by using Gö6976, PD98059 or U0126. Selective activation of cPKC‐α by thymeleatoxin mimicked these effects of nicotine. Thus, stimulation of nAChRs up‐regulated expression of IRS‐1/IRS‐2 via Ca2+‐dependent sequential activation of cPKC‐α and ERK, and enhanced insulin‐induced PI3K/Akt/GSK‐3β and ERK signaling pathways.  相似文献   

16.
AimsBesides their role in contraction, α1-adrenoceptors may be involved in prostate hyperplasia. This would require receptor signaling by growth-promoting pathways. Akt (syn. Protein kinase B) is an important regulator of growth and differentiation. Objective: To investigate whether α1-adrenoceptors in the human prostate activate Akt.Main methodsProstate tissue was obtained from patients undergoing radical prostatectomy. Akt expression was investigated by RT-PCR, Western blot, and immunohistochemistry. Akt activation by noradrenaline (30 μM) and phenylephrine (10 μM) was assessed by Western blot analyses with a phospho-specific antibody. The effects of the Akt inhibitors FPA-124 and 10-DEBC on phenylephrine-, noradrenaline- and electric field stimulation- (EFS-) induced contraction were studied in myographic measurements.Key findingsmRNA of all three Akt isoforms (Akt1, Akt2, Akt3) was detected by RT-PCR in all prostate samples (n = 6 patients). Protein expression was confirmed by Western blot analysis (n = 8 patients). Immunohistochemical staining for Akt revealed strong immunoreactivity in prostate smooth muscle cells (n = 5 patients). Stimulation of prostate tissues with noradrenaline (30 μM, n = 8 patients) or phenylephrine (10 μM, n = 7 patients) caused significant Akt phosphorylation at serine-473, indicating activation of Akt. FPA124 and 10-DEBC were without effects on noradrenaline-, phenylephrine-, or EFS-induced contraction of prostate strips.SignificanceProstate α1-adrenoceptors activate Akt. Consequently, Akt is a target of α1-blocker therapy, which has been unknown to date. Our findings point to functions of prostate α1-adrenoceptors besides contraction.  相似文献   

17.
Microglia, the resident macrophage of the brain, can release substances that aid neuronal development, differentiation and survival. We have investigated the effects of non-activated microglia on the survival of cultured rat cerebellar granule neurones. Microglial-conditioned medium, collected from primary rat microglial cultures, was used to treat 7-day-in-vitro neurones, and neuronal viability and proliferation was assessed following a further 1 or 7 days in culture. Microglial-conditioned medium enhanced neuronal survival by up to 50% compared with untreated neurones and this effect was completely abated by pretreatment of the microglia with l-leucine methyl ester. The expression of the proliferation marker Ki-67 increased in neuronal cultures treated with microglial-conditioned medium suggesting enhanced proliferation of precursor neurones. Microglial-induced neuronal proliferation could be attenuated by specific inhibition of mitogen-activated protein kinase or phosphatidylinositol-3-kinase/Akt signalling pathways, and by selective fractionation and immunodepletion of the microglial-conditioned medium. Activation of the Notch pathway was enhanced as antibody against the Notch ligand, delta-1, prevented the microglial-induced neuronal proliferation. These results show that microglia release stable neurotrophic factors that can promote neuronal precursor cell proliferation.  相似文献   

18.
Maintenance of oxygen homeostasis is a key requirement to ensure normal mammalian cell growth and differentiation. Hypoxia arises when oxygen demand exceeds supply, and is a feature of multiple human diseases including stroke, cancer and renal fibrosis. We have investigated the effect of hypoxia on kidney cells, and observed that insulin-induced cell viability is increased in hypoxia. We have characterized the role of protein kinase B (PKB/Akt) in these cells as a potential mediator of this effect. PKB/Akt activity was increased by low oxygen concentrations in kidney cells, and insulin-stimulated activation of PKB/Akt was stronger, more rapid and more sustained in hypoxia. Reduction of HIF1alpha levels using antimycin-A or siRNA targeting HIF1alpha did not affect PKB/Akt activation in hypoxia. Pharmacologic stabilization of HIF1alpha independent of hypoxia did not increase insulin-stimulated PKB/Akt activation. Although increased insulin-stimulated cell viability was observed in hypoxia, no differences in the degree of insulin-stimulated glucose uptake were observed in L6 muscle cells in hypoxia compared to normoxia. Thus, PKB/Akt may regulate specific cellular responses to growth factors such as insulin under adverse conditions such as hypoxia.  相似文献   

19.
20.
The antiapoptotic protein PED/PEA-15 features an Akt phosphorylation motif upstream from Ser(116). In vitro, recombinant PED/PEA-15 was phosphorylated by Akt with a stoichiometry close to 1. Based on Western blotting with specific phospho-Ser(116) PED/PEA-15 antibodies, Akt phosphorylation of PED/PEA-15 occurred mainly at Ser(116). In addition, a mutant of PED/PEA-15 featuring the substitution of Ser(116)-->Gly (PED(S116-->G)) showed 10-fold-decreased phosphorylation by Akt. In intact 293 cells, Akt also induced phosphorylation of PED/PEA-15 at Ser(116). Based on pull-down and coprecipitation assays, PED/PEA-15 specifically bound Akt, independently of Akt activity. Serum activation of Akt as well as BAD phosphorylation by Akt showed no difference in 293 cells transfected with PED/PEA-15 and in untransfected cells (which express no endogenous PED/PEA-15). However, the antiapoptotic action of PED/PEA-15 was almost twofold reduced in PED(S116-->G) compared to that in PED/PEA-15(WT) cells. PED/PEA-15 stability closely paralleled Akt activation by serum in 293 cells. In these cells, the nonphosphorylatable PED(S116-->G) mutant exhibited a degradation rate threefold greater than that observed with wild-type PED/PEA-15. In the U373MG glioma cells, blocking Akt also reduced PED/PEA-15 levels and induced sensitivity to tumor necrosis factor-related apoptosis-inducing ligand apoptosis. Thus, phosphorylation by Akt regulates the antiapoptotic function of PED/PEA-15 at least in part by controlling the stability of PED/PEA-15. In part, Akt survival signaling may be mediated by PED/PEA-15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号