共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear Overhauser effects in linear peptides. A low-temperature 500 MHz study of Met-enkephalin 总被引:2,自引:0,他引:2
Met5-enkephalin was studied in 1 mM solutions in 2H2O at room temperature and in a cryoprotective mixture (DMSOd6/2H2O, mole fraction of DMSO 0.49) in the temperature range 265-298 K. Small positive effects were observed between the ortho and meta protons of Tyr in aqueous solution at room temperature. Intraresidue effects can be made strong and negative by increasing the viscosity of the medium with a combination of cryoprotective mixtures and low temperatures. The use of mixtures with properties very close to water is very promising for conformational studies of enkephalins and of other small linear peptides. 相似文献
2.
C Ramakrishnan M Sukumar P Balaram 《Biochemical and biophysical research communications》1987,149(3):953-959
The conformational dependence of the interresidue interproton distances in peptides, C alpha H ... Ni + 1 H and NiH ... Ni + 1 H, have been used to identify zones of sterically allowed phi, psi space, where both distances are less than 3A and expected to yield nuclear Overhauser effects (NOEs). L-residues in left-handed helical conformations are expected to yield both interresidue NOEs and also an appreciable intraresidue NiH----C alpha iH NOE. The effect of cutoff distances has been evaluated. Experimental results on three model peptides illustrate the utility of these NOEs in identifying L-residues at the i + 2 position of Type II and I' beta-turns. Simultaneous observation of both interresidue NOEs may also be indicative of conformational heterogeneity in specific cases, as illustrated for a single residue in a decapeptide. 相似文献
3.
We have prepared a [32P]-labeled oligonucleotide probe carrying a free primary amine at its 3′terminus. This probe is used to initiate polymerization
of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation
are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques.
We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble
polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates
that we studied.
The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They
should greatly simplify the screening of potentially prebiotic polymerization reactions.
Correspondence to: L.E. Orgel
on sabbatical leave 相似文献
4.
The use of alpha,alpha-disubstituted amino acids represents a valuable strategy to exercise conformational control in peptides. Incorporation of the nonstereogenic alpha-aminoisobutyryl-glycyl (Aib-Gly) dipeptidyl sequence into i+1 and i+2 positions of an acyclic peptide sequence, originally designed and investigated by Gellman and coworkers, [H-Arg-Tyr-Val-Glu-Val-Yyy-Xxx-Orn-Lys-Ile-Leu-Gln-NH2] nucleates a stable [2:4] left-handed type I' beta-turn in water. NMR spectra show that this newly designed beta-hairpin does not aggregate in water up to a concentration of approximately 1 mM, and that its backbone conformation is superimposable on corresponding hairpins containing the DPro-Gly (literature) and Aib-DAla (this work) sequences. The Aib-Gly turn-inducer sequence eliminates complications because of cis-trans isomerization of Zzz-Pro bonds, and constitutes an attractive alternative to the proteogenic Asn-Gly and nonproteogenic DPro-Gly motifs previously suggested as turn-inducer sequences. These design principles could be exploited to prepare water-soluble beta-hairpin peptides with robust structures and novel function. 相似文献
5.
Summary Nuclear Overhauser effects (NOE) were measured between water protons and protons of the glutamic acid side chain of the bicyclic decapeptide
in aqueous solution. Positive NOEs were observed between the CH2 group of Glu and the water resonance, with similar NOE intensities at pH 2.0 and pH 6.3 in both the laboratory frame and the rotating frame of reference. These results indicate that the residence times of the hydration water molecules near the side-chain methylene protons are shorter than 500 ps for both the charged form and the uncharged form of Glu, and hence comparable to the water residence times near uncharged amino acid side chains. Furthermore, this study shows that the acidic proton in protonated carboxylic acid groups is not likely to interfere with the observation of polypeptide-hydration water NOEs, which is in contrast to the hydroxyl protons of the side chains of serine, threonine and tyrosine.Abbreviations NOE
nuclear Overhauser effect
- NOESY
NOE spectroscopy in the laboratory frame
- ROESY
NOE spectroscopy in the rotating frame
- ID
one-dimensional
- 2D
two-dimensional
- HPLC
high-pressure liquid chromatography 相似文献
6.
7.
K Uma V S Chauhan A Kumar P Balaram 《International journal of peptide and protein research》1988,31(4):349-358
Two isomeric, acyclic tetrapeptides containing a Z-dehydrophenylalanine residue (delta Z-Phe) at position 2 or 3, Boc-Leu-Ala-delta Z-Phe-Leu-OMe (1) and Boc-Leu-delta Z-Phe-Ala-Leu-OMe (2), have been synthesized and their solution conformations investigated by 270 MHz 1H n.m.r. spectroscopy. In peptide 1 the Leu(4) NH group appears to be partially shielded from solvent, while in peptide 2 both Ala(3) and Leu(4) NH groups show limited solvent accessibility. Extensive difference nuclear Overhauser effect (n.O.e.) studies establish the occurrence of several diagnostic inter-residue n.O.e.s (Ci alpha H----Ni+1H and NiH----Ni+1H) between backbone protons. The simultaneous observation of "mutually exclusive" n.O.e.s suggests the presence of multiple solution conformations for both peptides. In peptide 1 the n.O.e. data are consistent with a dynamic equilibrium between an -Ala-delta Z-Phe- Type II beta-turn structure and a second species with delta Z-Phe adopting a partially extended conformation with psi values of +/- 100 degrees to +/- 150 degrees. In peptide 2 the results are compatible with an equilibrium between a highly folded consecutive beta-turn structure for the -Leu-delta Z-Phe-Ala- segment and an almost completely extended conformation. 相似文献
8.
Conformational aspects of N-glycosylation of proteins. Studies with linear and cyclic peptides as probes 总被引:2,自引:0,他引:2 下载免费PDF全文
Conformational aspects of N-glycosylation of glycoproteins have been studied by using a series of peptides which contained, in addition to the `marker sequence' Asn-Gly-Thr, two cysteine residues in various positions of the peptide chain. The presence of two cysteines permitted a partial fixation of the above triplet sequence in cyclic structures of various size by intramolecular disulphide bond formation. Comparison of the glycosyl acceptor properties of the linear peptides and their corresponding cyclic analogues allows the following statements. The considerably lower acceptor capabilities of the cyclic derivatives indicate that the restriction of rotational degrees of freedom imposed by disulphide bonding results in a conformation which hinders a favourable interaction of the peptide substrate with the N-glycosyltransferase. On the other hand, the glycosylation rate of linear peptides increases with increasing chain length, suggesting that the amino acids on both the N- and C-terminal side of the `marker sequence' may contribute to a considerable extent to the induction of an `active' conformation. Realization of a potential sugar attachment site requires a hydrogen bond interaction within the `marker sequence' between the oxygen of threonine (serine) as the hydrogen bond acceptor and the β-amide of asparagine as the donor [Bause & Legler (1981) Biochem. J. 195, 639–644]. This interaction is obviously facilitated when the peptide chain can adopt a conformation which resembles a β-turn or other loop structure. The available experimental and statistical data are discussed in terms of possible structural features for N-glycosylation, with the aid of space-filling models. 相似文献
9.
Important aspects in detailed nmr analyses of the conformations of linear peptides are discussed using enkephalin and the α-mating factor of Saccharomyces cerevisiae as examples. The cationic, dipolar, and anionic forms in dimethyl sulfoxide solution may be identified by ir analyses. Because of the electrostatic interaction between the N- and C-terminal groups, the dipolar form of enkephalin takes the folded conformation, as well as extended conformation(s), in dimethyl sulfoxide solution. Such conformational equilibrium is responsible for anomalous temperature dependences and solvent-composition dependences of the amide and Cα proton chemical shifts. Active analogs, enkephalinamide and enkephalinol, take extended conformation(s) in solution. These opioid peptides probably take a specific active conformation upon binding with a receptor. For the α-mating factor and active peptide analogs in aqueous solution, a folded conformation with two βturn structures is responsible for the biological activity. 相似文献
10.
Oligopeptide-mediated helix stabilization of peptides in hydrophobic solutions was previously found by NMR and CD spectroscopic studies. The oligopeptide included the hydrophobic amino acids found in its parent peptide and were interposed by relevant basic oracidic amino acids. The strength of the interactions depended on the amino acid sequences. However, no helix-stabilizing effect was seen for the peptides in phosphate buffer solution, because the peptides assumed a random-coil structure. In order to ascertain whether the helix-stabilizing effect of an oligopeptide on its parent peptide could operate in aqueous solution, model peptides EK17 (Ac-AEAAAAEAAAKAAAAKA-NH2) and IFM17 (Ac-AEAAAAEIFMKAAAAKA-NH2) that may assume an alpha-helix in aqueous solutions were synthesized. Interactions were examined between various oligopeptides (EAAAK, KAAAE, EIFMK, KIFME, KIFMK and EYYEE) and EK17 or IFM17 in phosphate buffer and in 80% trifluoroethanol (TFE)-20% H2O solutions by CD spectra. EAAAK had little effect on the secondary structures of EK17 in both buffer and TFE solutions, while KAAAE, which has the reverse amino acid sequence of EAAAK, had a marked helix-destabilizing effect on EK17 in TFE. EIFMK and KIFME were found to stabilize the alpha-helical structure of EK17 in phosphate buffer solutions, whereas KIFMK and EYYEE destabilized the alpha-helical structure of EK17. EIFMK and KIFME had no effect on IFM17, because unexpectedly, IFM17 had appreciable amounts of beta-sheet structure in buffer solution. It was concluded that in order for the helix-stabilizing (1) the model peptide, the alpha-helical conformation of which is to be stabilized, should essentially assume an alpha-helical structure by nature, and (2) the hydrophobicity of the side-chains of the oligopeptide should be high enough for the oligopeptide to perform stable specific side chain-side chain intermolecular hydrophobic interactions with the model peptide. 相似文献
11.
Synthetic peptides have found increasing use in dissecting cell signalling pathways and have been employed as synthetic antigens, protein kinase and protease substrates. Recently, it has become evident that relatively short (10–30mer) peptides are able to mimic that part of the signalling protein to which their sequence corresponds. In particular, peptides corresponding to the C-terminus of Zea mays auxin binding protein, ZmABP1, were able to modulate ion channel function within Vicia guard cells. In this report, GTPS binding to NaCl-washed Zea microsomal membranes is shown to be stimulated by peptide A6.2, corresponding to the C-terminal 16 residues of ZmABP1, only when the membranes are reconstituted with soluble Zea protein fractions containing GP1 and G0 homologues. 相似文献
12.
A theoretical full-relaxation matrix analysis of heteronuclear Overhauser effects in oligosaccharides is described. This analysis predicts that trans-glycosidic heteronuclear 1H{13C} NOEs should be measurable in a model disaccharide with appropriate enrichment with 13C and 2H. These predictions are confirmed experimentally, and the value of these measurements is discussed for conformational analysis. 相似文献
13.
The rates at which a peptide hexamer and a peptide octamer interconvert between left- and right-handed helical forms in CD2Cl2 solution have been characterized by 13C dynamic NMR (DNMR) spectroscopy. The peptide esters studied are Fmoc-(Aib)n-OtBu (n = 6 and 8), where Fmoc is 9-fluorenylmethyoxycarbonyl and Aib is the strongly helix-forming residue alpha-aminoisobutyric acid. Because the Aib residue is itself achiral, homooligomers of this residue form a 50/50 mixture of enantiomeric 3(10)-helices in solution. It has been demonstrated (R.-P. Hummel, C. Toniolo, and G. Jung, Angewandte Chemie International Edition, 1987, Vol. 26, pp. 1150-1152) that oligomers of Aib interconvert on the millisecond timescale. We have performed lineshape analysis of 13C-NMR spectra collected for our peptides enriched with 13C at a single residue. Rate constants for the octamer range from 6 s(-1) at 196 K to about 56,500 s(-1) at 320 K. At all temperatures, the hexamer interconverts about three times faster than the octamer. Eyring plots of the data reveal experimentally indistinguishable DeltaH++ values for the hexamer and octamer of 37.8 +/- 0.6 and 37.6 +/- 0.4 kJ mol(-1) respectively. The difference in the rates of interconversion is dictated by entropic factors. The hexamer and octamer exhibit negative DeltaS++ values of -29.0(-1) +/- 2.5 and -37.3 +/- 1.7 J K(-1) mol(-1), respectively. A mechanism for the helix-helix interconversion is proposed. and calculated DeltaG++ values are compared to the estimate for a decamer undergoing a helix-helix interconversion. 相似文献
14.
Biris N Stavrakoudis A Politou AS Mikros E Sakarellos-Daitsiotis M Sakarellos C Tsikaris V 《Biopolymers》2003,69(1):72-86
According to general belief, the conformational information on short linear peptides in solution derived at ambient temperature from NMR spectrometry represents a population-weighted average over all members of an ensemble of rapidly interconverting conformations. Usually the search for discrete conformations is concentrated at low temperatures especially when sharp NMR resonances are detected at room temperature. Using the peptide Ac-RGD-NH(2) (Ac-Arg-Gly-Asp-NH(2), Ac: acetyl) as a model system and following a new approach, we have been able to demonstrate that short linear peptides can adopt discrete conformational states in DMSO-d(6) (DMSO: dimethylsulfoxide) which vary in a way critically dependent on the reconstitution conditions used before their dissolution in DMSO-d(6). The conformers are stabilized by intramolecular hydrogen bonds, which persist at high temperatures and undergo a very slow exchange with their extended structures in the NMR chemical shift time scale. The reported findings provide clear evidence for the occurrence of solvent-induced conformational exchange and point to DMSO as a valuable medium for folding studies of short linear peptides. 相似文献
15.
C. W. Hilbers A. Heerschap C. A.G. Haasnoot J. A.L.I. Walters 《Journal of biomolecular structure & dynamics》2013,31(1):183-207
Abstract Recently, the imino proton spectrum of yeast tRNAPhe has been assigned by means of the application of the nuclear Overhauser effect (NOE). In the present paper it will be shown that even for tRNA (MW 28000) connectivities between the imino proton spins can be observed using two-dimensional NOE spectroscopy. In this way the imino proton resonances of the D-stem region are assigned. The results are discussed in relation to those obtained by the classical one-dimensional nuclear Overhauser effect. It turns out that in 2D-NOE experiments connectivities from overlapping resonances can be observed which cannot be determined by one-dimensional Overhauser experiments. Moreover, the total assignment of the imino proton spectrum of yeast tRNAPhe is used to relate the three-dimensional crystal structure of the tRNA to its solution structure. It is shown that the principle elements of the X-ray structure, i.e. the hydrogen bonding network and the stacking of the stems upon one another, are also found in solution. This is true for the presence as well as for the absence of magnesium ions. However, in absence of magnesium ions the tRNA structure appears to differ in details from that in the presence of magnesium ions. Finally, the influence of the elongation factor Tu from B.stearothermophilus on the tRNA structure is discussed. 相似文献
16.
Chemical shift perturbations of the eight 1H resonances and of the three 31P resonances in the nuclear magnetic resonance spectra of ATP in 2H2O, pH 6.0, have been induced by specifically bound lanthanide cations Ln3+ (Ln = Pr, Nd, Eu, Yb). After separation of contact (through bond) perturbations the resultant through-space shifts, which are found to have axial symmetry, are used in an analysis of the conformation of the Ln3+ -ATP complex. A computer program was used to search for the conformations of the molecule which fit the nuclear magnetic resonance data. The "best" solutions obtained represent a small closely interrelated family of conformations. Effects of the cation Gd3+ on the longitudinal relaxation rates of five of the protons of ATP were also measured and used to confirm the conformational family. One of these conformations corresponds closely to one of the crystal structure forms, with an anti arrangement of the base-ribose unit and and a right-hand helical phosphate chain folded towards the adenine part of the molecule. The lanthanide ion binds predominantly to the beta and gamma phosphates and does not interact with the purine ring, these two centres being separated by at least one water molecule. 相似文献
17.
18.
19.
Class III histone deacetylases (Sir2 or sirtuins) catalyze the NAD+-dependent conversion of acetyl-lysine residues to nicotinamide, 2'-O-acetyl-ADP-ribose (OAADPr), and deacetylated lysine. Class I and II HDACs utilize a different deacetylation mechanism, utilizing an active site zinc to direct hydrolysis of acetyl-lysine residues to lysine and acetate. Here, using ten acetyl-lysine analog peptides, we have probed the substrate binding pockets of sirtuins and investigated the catalytic differences among sirtuins and class I and II deacetylases. For the sirtuin Hst2, acetyl-lysine analog peptide binding correlated with the hydrophobic substituent parameter pi with a slope of -0.35 from a plot of log Kd versus pi. Interestingly, propionyl- and butyryl-lysine peptides were found to bind tighter to Hst2 compared with acetyl-lysine peptide and showed measurable rates of catalysis with Hst2, Sirt1, Sirt2, and Sirt3, suggesting propionyl- and butyryl-lysine proteins may be sirtuin substrates in vivo. Unique among the acetyl-lysine analog peptides examined, homocitrulline peptide produced ADP-ribose instead of the corresponding OAADPr analog. The electron-withdrawing nature of each acetyl analog had a profound impact on the deacylation rate between deacetylase classes. The rate of catalysis with the acetyl-lysine analog peptides varied over five orders of magnitude with the class III deacetylase Hst2, revealing a linear free energy relationship with a slope of -1.57 when plotted versus the Taft constant, sigma*. HDAC8, a class I deacetylase, displayed the opposite trend with a slope of +0.79. These results are applicable toward the development of selective substrates and other mechanistic probes of protein deacetylases. 相似文献
20.
Grigory M. Lipkind Alexander S. Shashkov Nikolay K. Kochetkov 《Carbohydrate research》1985,141(2):191-197
A nuclear Overhauser enhancement in α-cellobiose 1-phosphate, resulting from pre-irradiation of H-1′ of the non-reducing glucosyl group, was measured and calculated theoretically. Comparison of these data reveals a complicated conformational equilibrium in aqueous solutions of the cellobiose derivative. 相似文献